• Title/Summary/Keyword: iPSCs

Search Result 58, Processing Time 0.026 seconds

Generation of Induced Pluripotent Stem Cells from Lymphoblastoid Cell Lines by Electroporation of Episomal Vectors

  • Myunghyun Kim;Junmyeong Park;Sujin Kim;Dong Wook Han;Borami Shin;Hans Robert Scholer;Johnny Kim;Kee-Pyo Kim
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • Background and Objectives: Lymphoblastoid cell lines (LCLs) deposited from disease-affected individuals could be a valuable donor cell source for generating disease-specific induced pluripotent stem cells (iPSCs). However, generation of iPSCs from the LCLs is still challenging, as yet no effective gene delivery strategy has been developed. Methods and Results: Here, we reveal an effective gene delivery method specifically for LCLs. We found that LCLs appear to be refractory toward retroviral and lentiviral transduction. Consequently, lentiviral and retroviral transduction of OCT4, SOX2, KFL4 and c-MYC into LCLs does not elicit iPSC colony formation. Interestingly, however we found that transfection of oriP/EBNA-1-based episomal vectors by electroporation is an efficient gene delivery system into LCLs, enabling iPSC generation from LCLs. These iPSCs expressed pluripotency makers (OCT4, NANOG, SSEA4, SALL4) and could form embryoid bodies. Conclusions: Our data show that electroporation is an effective gene delivery method with which LCLs can be efficiently reprogrammed into iPSCs.

Construction of 3D Culture Medium with Elastin-like Polypeptide (ELP) Hydrogel for Human Pluripotent Stem Cells

  • Lee, Jonghwan;Rhee, Ki-Jong;Jung, Donjgu
    • Biomedical Science Letters
    • /
    • v.19 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • Pluripotent stem cells (PSCs) have lots of potential in biomedical sciences owing to its potential to differentiate into any kind of cells in the body. However, it is still a challenge to culture PSCs on a large scale for application to regenerative medicine. Herein, we introduce a synthetic polymer that enables large-scale suspension culture of human PSCs. By employing suspension culture, it became unnecessary to use conventional substrata such as mouse embryonic fibroblast (MEF) or Matrigel$^{TM}$, which are believed to be main causative sources of xenogeneic contamination in cultured human PSCs in vitro. Human PSCs were cultured in the medium in which elastin-like polypeptide (ELP) dissolved. The ELP in the medium became harden as temperature increases by transforming the medium into a semi-solid gel that supported growth of human PSCs in suspension. Gel-sol transition temperature of ELP can be adjusted by modifying the peptide sequence in which 5 amino acids, Val-Pro-Gly-Xaa-Gly, repeated sequentially. We constructed 3D suspension media having transition temperature around $33{\sim}35^{\circ}C$ using an ELP consisted of 40, 60, or 80 repeats of a monomer, which was Val-Pro-Gly-Val-Gly. Among the ELPs, ELP80 was chosen as the best ELP to support growth of human PSCs in suspension culture. This result suggests that the ELP80 can be a medium component for culturing human PSCs in large-scale.

Long-term Stability of Perovskite Solar Cells with Inhibiting Mass Transport with Buffer Layers (물질이동 억제 버퍼층 형성을 통한 페로브스카이트 태양전지 장기 안정성 확보)

  • Bae, Mi-Seon;Jeong, Min Ji;Chang, Hyo Sik;Yang, Tae-Youl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.17-24
    • /
    • 2021
  • Perovskite solar cells (PSCs) can be fabricated through solution process economically with variable bandgap that is controlled by composition of precursor solution. Tandem cells in which PSCs combined with silicon solar cells have potential to reach high power conversion efficiency over 30%, however, lack of long-term stability of PSCs is an obstacle to commercialization. Degradation of PSCs is mainly attributed to the mass transport of halide and metal electrode materials. In order to ensure the long-term stability, the mass transport should be inhibited. In this study, we confirmed degradation behaviors due to the mass transport in PSCs and designed buffer layers with LiF and/or SnO2 to improve the long-term stability by suppressing the mass transport. Under high-temperature storage test at 85℃, PSCs without the buffer layers were degraded by forming PbI2, AgI, and the delta phase of the perovskite material, while PSCs with the buffer layers showed improved stability with keeping the original phase of the perovskite. When the LiF buffer and encapsulation were applied to PSCs, superior long-term stability on 85℃-85% RH dump heat test was achieved; efficiency drop was not observed after 200 h. It was also confirmed that 90.6% of the initial efficiency was maintained after 200 hours of maximum power tracking test under AM 1.5G-1SUN illumination. Here, we have demonstrated that the buffer layer is essential to achieve long-term stability of PSCs.

Acceleration of Mesenchymal-to-Epithelial Transition (MET) during Direct Reprogramming Using Natural Compounds

  • Seo, Ji-Hye;Jang, Si Won;Jeon, Young-Joo;Eun, So Young;Hong, Yean Ju;Do, Jeong Tae;Chae, Jung-il;Choi, Hyun Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1245-1252
    • /
    • 2022
  • Induced pluripotent stem cells (iPSCs) can be generated from somatic cells using Oct4, Sox2, Klf4, and c-Myc (OSKM). Small molecules can enhance reprogramming. Licochalcone D (LCD), a flavonoid compound present mainly in the roots of Glycyrrhiza inflata, acts on known signaling pathways involved in transcriptional activity and signal transduction, including the PGC1-α and MAPK families. In this study, we demonstrated that LCD improved reprogramming efficiency. LCD-treated iPSCs (LCD-iPSCs) expressed pluripotency-related genes Oct4, Sox2, Nanog, and Prdm14. Moreover, LCD-iPSCs differentiated into all three germ layers in vitro and formed chimeras. The mesenchymal-to-epithelial transition (MET) is critical for somatic cell reprogramming. We found that the expression levels of mesenchymal genes (Snail2 and Twist) decreased and those of epithelial genes (DSP, Cldn3, Crb3, and Ocln) dramatically increased in OR-MEF (OG2+/+/ROSA26+/+) cells treated with LCD for 3 days, indicating that MET effectively occurred in LCD-treated OR-MEF cells. Thus, LCD enhanced the generation of iPSCs from somatic cells by promoting MET at the early stages of reprogramming.

Regenerative medicine using dental tissue derived induced pluripotent stem cell-biomaterials complex (구강조직유래 유도만능줄기세포-생체재료 복합체의 재생의료 동향)

  • Jun, Soo-Kyung;Lee, Hae-Hyoung;Kim, Hae-Won;Lee, Jung-Hwan
    • The Journal of the Korean dental association
    • /
    • v.55 no.12
    • /
    • pp.828-840
    • /
    • 2017
  • In recent years, many researchers and clinicians found interest in regenerative medicine using induced pluripotent stem cells (iPSCs) with biomaterials due to their pluripotency, which is able to differentiate into any type of cells without human embryo, which of use is ethically controversial. However, there are limitations to make iPSCs from adult somatic cells due to their low stemness and donor site morbidity. Recently, to overcome above drawbacks, dental tissue-derived iPSCs have been highlighted as a type of alternative sources for their high stemness, easy gathering, and their complex (ectomesenchymal) origin, which easily differentiate them to various cell types for nerve, vessel, and other dental tissue regeneration. In other part, utilizing biomaterials for regenerative medicine using cell is recently highlighted because they can modulate cell adhesion, proliferation and (de)differentiation. Therefore, this paper will convey the overview of advantages and drawbacks of dental tissue-derived iPSCs and their future application with biomaterials.

  • PDF

Improvement of Cell Viability Using a Rho-associated Protein Kinase (ROCK) Inhibitor in Human Dental Papilla derived Single-induced Pluripotent Stem Cells (ROCK 억제제를 통한 사람 치유두 조직 유래 단일 사람 유도만능줄기세포의 생존성 향상)

  • Shim, Yoo-Jin;Kang, Young-Hoon;Kim, Hyeon-Ji;Kim, Mi-Jeong;Lee, Hyeon-Jeong;Son, Young-Bum;Lee, Sung-Ho;Jeon, Byeong-Gyun
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.895-903
    • /
    • 2019
  • The aim of the present study was to improve the cell viability of human dental papilla derived single-induced pluripotent stem cells (iPSCs) using a Rho-associated protein kinase (ROCK) inhibitor, Y-27632. The iPSCs were produced using an episomal plasmid-based reprogramming method. After cell separation using trypsin, the iPSCs were treated with 0, 0.5, 1, 2.5, 5, 7.5, or $10{\mu}M$ Y-27632 for 5 d. Cell viability increased significantly following the $5{\mu}M$ Y-27632 treatment (p<0.05). When the iPSCs were exposed to medium containing $10{\mu}M$ Y-27632 for 0, 1, 2, 3, 4, and 5 d, the cell viability rate increased significantly in accordance with the cell viability rate (p<0.05). To evaluate the effect of the Y-27632 treatment on stemness characteristics, the expression of stem cell-specific transcripts and telomerase activity were investigated in the iPSCs treated with $10{\mu}M$ Y-27632 for 5 d. The expression levels of stem cell-specific transcripts, such as OCT-4, NONOG, and SOX-2, and telomerase activity were not significantly different in the iPSCs treated with $10{\mu}M$ Y-27632 as compared with those of untreated control iPSCs (p>0.05). Taken together, the results demonstrated that cell viability can be improved by treatment with the ROCK inhibitor Y-27632, without losing iPSC stemness characteristics.

ZnO-free Inverted Polymer Solar Cells Based on New Viologen Derivative as a Cathode Buffer Layer (ZnO를 대체 가능한 새로운 Viologen 유도체가 적용된 역구조 고분자 태양전지)

  • Kim, Youn Hwan;Kim, Dong Geun;Kim, Joo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.512-515
    • /
    • 2016
  • A new viologen derivative namely 1,1'-bis(3,4-dihydroxybutyl)-[4,4'-bipyridine]-1,1'-diium bromide (V-Pr-2OH) was synthesized and applied as a cathode buffer layer to inverted polymer solar cells (PSCs) based on the blend of PTB7 : $PC_{71}BM$. PSCs with the structure of ITO/V-Pr-2OH/PTB7 : $PC_{71}BM/MoO_3/Ag$ as the cathode buffer layer showed the power conversion efficiency (PCE) up to 7.28%, which is comparable to that of the PSCs with the structure of ITO/ZnO/PTB7 : $PC_{71}BM/MoO_3/Ag$ (7.44%) in the absence of V-Pr-2OH. This study demonstrates that a highly efficient PSCs without any high temperature heat treatment can be obtained.

Selection of iPSCs without mtDNA deletion for autologous cell therapy in a patient with Pearson syndrome

  • Yeonmi Lee;Jongsuk Han;Sae-Byeok Hwang;Soon-Suk Kang;Hyeoung-Bin Son;Chaeyeon Jin;Jae Eun Kim;Beom Hee Lee;Eunju Kang
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.463-468
    • /
    • 2023
  • Screening for genetic defects in the cells should be examined for clinical application. The Pearson syndrome (PS) patient harbored nuclear mutations in the POLG and SSBP1 genes, which could induce systemic large-scale mitochondrial genome (mtDNA) deletion. We investigated iPSCs with mtDNA deletions in PS patient and whether deletion levels could be maintained during differentiation. The iPSC clones derived from skin fibroblasts (9% deletion) and blood mononuclear cells (24% deletion) were measured for mtDNA deletion levels. Of the 13 skin-derived iPSC clones, only 3 were found to be free of mtDNA deletions, whereas all blood-derived iPSC clones were found to be free of deletions. The iPSC clones with (27%) and without mtDNA deletion (0%) were selected and performed in vitro and in vivo differentiation, such as embryonic body (EB) and teratoma formation. After differentiation, the level of deletion was retained or increased in EBs (24%) or teratoma (45%) from deletion iPSC clone, while, the absence of deletions showed in all EBs and teratomas from deletion-free iPSC clones. These results demonstrated that non-deletion in iPSCs was maintained during in vitro and in vivo differentiation, even in the presence of nuclear mutations, suggesting that deletion-free iPSC clones could be candidates for autologous cell therapy in patients.

Reversine, Cell Dedifferentiation and Transdifferentiation (Reversine과 세포의 역분화 및 교차분화)

  • Moon, Yang Soo
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.394-401
    • /
    • 2020
  • As embryonic stem cells become pluripotent, they may cause tumor development when injected into a host. Therefore, researchers are focusing heavily on the therapeutic potential of tissue-specific stem cells (adult stem cells) without resultant tumor formation. Adult stem cells can proliferate for a limited number of generations and are restricted to certain cell types (multipotent). Mature tissue cell types in mammals cannot be intrinsically dedifferentiated or transdifferentiated to adult stem cells. Hence, the technology of induced pluripotent stem cells (iPSCs) for reprogramming adult somatic cells was introduced in 2006, ushering in a new era in adult stem cell research. Although iPSCs have been widely used in the field, the approach has several limitations: instability of the reprogramming process, risk of incomplete reprogramming, and exposure to transgenes integrated into the cell genome. Two years before the introduction of the iPSC technique, the synthetic small molecule 2,6-disubstituted purine, called reversine, was introduced. Reversine can induce the dedifferentiation of committed cells into multipotent progenitor-type cells by reprogramming and converting adult cells to other cell types under appropriate stimuli. Thus, it can be used as a chemically induced multipotent cell agent to overcome the limitations of iPSCs. Also, as an alternative therapeutic approach for treating obesity, it can be used to generate beige cells by browning white adipocytes. While reversine has the potential to act as an anti-cancer agent, this review focuses on its role in differentiation, dedifferentiation, and transdifferentiation in somatic cells.

Pig Pluripotent Stem Cells as a Candidate for Biomedical Application

  • Choi, Kwang-Hwan;Lee, Chang-Kyu
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.139-147
    • /
    • 2019
  • Stem cells are progenitor cells that are capable of self-renewal and differentiation into various cells. Especially, pluripotent stem cells (PSCs) have in vivo and in vitro differentiation capacity into three germ layers and can proliferate infinitely. The differentiation ability of PSCs can be applied for regenerative medicine and tissue engineering. In domestic animals, their PSCs have a potential for preclinical therapy as well as the production of transgenic animals and agricultural usage such as cultured meat. Among several domestic animals, a pig is considered as an ideal model for biomedical and agricultural purposes mentioned above. In this reason, studies for pig PSCs including embryonic stem cells (ESCs), embryonic germ cells (EGCs) and induced pluripotent stem cells (iPSCs) have been conducted for decades. Therefore, this review will discuss the history of PSCs derived from various origins and recent progress in pig PSC research field.