• 제목/요약/키워드: i-NOS

검색결과 1,813건 처리시간 0.029초

Wound Healing Activity of Gamma-Aminobutyric Acid (GABA) in Rats

  • Han, Dong-Oh;Kim, Hee-Young;Lee, Hye-Jung;Shim, In-Sop;Hahm, Dae-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권10호
    • /
    • pp.1661-1669
    • /
    • 2007
  • Gamma-aminobutyric acid (GABA) is a non-protein amino acid. It is well known for its role as an inhibitory neurotransmitter of developing and operating nervous systems in brains. In this study, a novel function of GABA in the healing process of cutaneous wounds was presented regarding anti-inflammation and fibroblast cell proliferation. The cell proliferation activity of GABA was verified through an MTT assay using murine fibroblast NIH3T3 cells. It was observed that GABA significantly inhibited the mRNA expression of iNOS, IL-$1{\beta}$, and TNF-${\alpha}$ in LPS-stimulated RAW 264.7 cells. To evaluate in vivo activity of GABA in wound healing, excisional open wounds were made on the dorsal sides of Sprague-Dawley rats under anesthesia, and the healing of the wounds was apparently assessed. The molecular aspects of the healing process were also investigated by hematoxylineosin staining of the healed skin, displaying the degrees of re-epithelialization and linear alignment of the granulation tissue, and immunostaining and RT-PCR analyses of fibroblast growth factor and platelet-derived growth factor, implying extracellular matrix synthesis and remodeling of the skin. The GABA treatment was effective to accelerate the healing process by suppressing inflammation and stimulating re-epithelialization, compared with the epidermal growth factor treatment. The healing effect of GABA was remarkable at the early stage of wound healing, which resulted in significant reduction of the whole healing period.

The Aqueous Extract of Radio-Resistant Deinococcus actinosclerus BM2T Suppresses Lipopolysaccharide-Mediated Inflammation in RAW264.7 Cells

  • Kim, Myung Kyum;Jang, Seon-A;Namkoong, Seung;Lee, Jin Woo;Park, Yuna;Kim, Sung Hyeok;Lee, Sung Ryul;Sohn, Eun-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권4호
    • /
    • pp.583-590
    • /
    • 2020
  • Deinococcus actinosclerus BM2T (GenBank: KT448814) is a radio-resistant bacterium that is newly isolated from the soil of a rocky hillside in Seoul. As an extremophile, D. actinosclerus BM2T may possess anti-inflammatory properties that may be beneficial to human health. In this study, we evaluated the anti-inflammatory effects of BM2U, an aqueous extract of D. actinosclerus BM2T, on lipopolysaccharide (LPS)-mediated inflammatory responses in RAW264.7 macrophage cells. BM2U showed antioxidant capacity, as determined by the DPPH radical scavenging (IC50 = 349.3 ㎍/ml) and ORAC (IC50 = 50.24 ㎍/ml) assays. At 20 ㎍/ml, BM2U induced a significant increase in heme oxygenase-1 (HO-1) expression (p < 0.05). BM2U treatment (0.2-20 ㎍/ml) significantly suppressed LPS-induced increase in the mRNA expression of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 (p < 0.05). BM2U treatment also suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which are involved in the production of inflammatory mediators. BM2U treatment also inhibited the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs): JNK, ERK, and p-38 (p < 0.05). Collectively, BM2U exhibited anti-inflammatory potential that can be exploited in attenuating inflammatory responses.

JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38

  • Yi, Young-Su;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권3호
    • /
    • pp.345-352
    • /
    • 2017
  • Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-$1{\beta}$ without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the $NF-{\kappa}B$ transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the $NF-{\kappa}B$ pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the $NF-{\kappa}B$ and AP-1 pathways, respectively.

Inhibition of Tumor Necrosis $Factor-{\alpha}$ mRMA Expression by a Limited Series of Tetrahydroisoquinolines in Mouse Peritoneal Macrophages

  • Jung, Tae-Ho;Lee, Young-Soo;Kang, Young-Jin;Lee, Bog-Kyu;Ko, Young-Shin;Seo, Han-Geuk;Chung, Soo-Youn;Lee, Duck-Hyung;Yun-Choi, Hye-Sook;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권4호
    • /
    • pp.325-331
    • /
    • 2000
  • Tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$ plays important roles in inflammatory responses. Some of tetrahydroisoquinoline (THI) compounds exhibited to inhibit iNOS expression in animal studies and RAW 264.7 cells, but the action of THI on inflammatory reaction was not fully investigated. In the present study, we examined a limited series of THIs (higenamine, YS-51 and THI-52) on the $TNF-{\alpha}$ mRNA expression in mouse peritoneal macrophages by Northern analysis. When thioglycollate-stimulated peritoneal macrophages were incubated with LPS (100 ng/ml), expression of $TNF-{\alpha}$ mRNA was evident and reached its maximum at 2.5 h, which was reduced concentration-dependently by treatment with THIs. When the $TNF-{\alpha}$ activity of macrophage-conditioned media was measured using a TNF-sensitive L929 fibroblast cell line, CCL 1, all THIs increased the cell viability in a concentration dependent manner. The concentrations of THIs used are not cytotoxic by itself when analysed by MTT. Furthermore, nitrite/nitrate level was significantly reduced by the presence of THIs in cells treated with $LPS+interferon-{\gamma}\;(IFN-{\gamma}).$ It is concluded, thus, that these results strongly indicated that THIs can suppress the $TNF-{\alpha}$ expression and reduce NO, which may be useful for the inflammatory disorders.

  • PDF

Anti-Inflammatory and Anti-Superbacterial Activity of Polyphenols Isolated from Black Raspberry

  • Kim, Seong Keun;Kim, Hyuna;Kim, Song Ah;Park, Hee Kuk;Kim, Wonyong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권1호
    • /
    • pp.73-79
    • /
    • 2013
  • The fruit of the black raspberry (Rubus coreanus Miquel) has been employed in traditional medicine, and recent studies have demonstrated its measureable biological activities. However, the root of the black raspberry has not been studied. Therefore, in this study, we evaluated the anti-inflammatory and antibacterial properties of the root and unripe fruit polyphenols of the black raspberry. Both polyphenols proved to have anti-inflammatory activity as evidenced by the decreased nitric oxide (NO), cytokines (IL-$1{\beta}$, IL-6, and IL-10) and prostaglandin E2 ($PGE_2$) levels in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages. However, root polyphenols showed stronger anti-inflammatory activity than fruit polyphenols. LPS-induced mRNA and protein expressions of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 levels were also decreased, confirming the anti-inflammatory activity. Root polyphenols showed lethal activity against methicillin-resistant Staphy-lococcus aureus (MRSA), carbapenem-resistant Acinetobacter baumannii (CRAB), and Bacillus anthracis. In contrast, the black raspberry fruit did not demonstrate these properties. These data provide the first demonstration that black raspberry root has potential anti-inflammatory and anti-superbacterial properties that can be exploited as alternatives for use in the food and cosmetic industries and/or as pharmaceuticals.

Ameliorative effects of atractylodin on intestinal inflammation and co-occurring dysmotility in both constipation and diarrhea prominent rats

  • Yu, Changchun;Xiong, Yongjian;Chen, Dapeng;Li, Yanli;Xu, Bin;Lin, Yuan;Tang, Zeyao;Jiang, Chunling;Wang, Li
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권1호
    • /
    • pp.1-9
    • /
    • 2017
  • Intestinal disorders often co-occur with inflammation and dysmotility. However, drugs which simultaneously improve intestinal inflammation and co-occurring dysmotility are rarely reported. Atractylodin, a widely used herbal medicine, is used to treat digestive disorders. The present study was designed to characterize the effects of atractylodin on amelioration of both jejunal inflammation and the co-occurring dysmotility in both constipation-prominent (CP) and diarrhea-prominent (DP) rats. The results indicated that atractylodin reduced proinflammatory cytokines TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 in the plasma and inhibited the expression of inflammatory mediators iNOS and NF-kappa B in jejunal segments in both CP and DP rats. The results indicated that atractylodin exerted stimulatory effects and inhibitory effects on the contractility of jejunal segments isolated from CP and DP rats respectively, showing a contractile-state-dependent regulation. Atractylodin-induced contractile-state-dependent regulation was also observed by using rat jejunal segments in low and high contractile states respectively (5 pairs of low/high contractile states). Atractylodin up-regulated the decreased phosphorylation of 20 kDa myosin light chain, protein contents of myosin light chain kinase (MLCK), and MLCK mRNA expression in jejunal segments of CP rats and down-regulated those increased parameters in DP rats. Taken together, atractylodin alleviated rat jejunal inflammation and exerted contractile-state-dependent regulation on the contractility of jejunal segments isolated from CP and DP rats respectively, suggesting the potential clinical implication for ameliorating intestinal inflammation and co-occurring dysmotility.

LPS로 유도된 RAW 264.7 대식세포에 대한 애기외톨개 모자반(Myagropsis yendoi) 에틸아세테이트 분획물의 항염증 효과 (Anti-inflammatory Effect of an Ethyl Acetate Fraction from Myagropsis yendoi on Lipopolysaccharides-stimulated RAW 264.7 Cells)

  • 김보운;김재일;김형락;변대석
    • 한국수산과학회지
    • /
    • 제47권5호
    • /
    • pp.527-536
    • /
    • 2014
  • An ethanolic extract from Myagropsis yendoi was fractionated using several solvents. Among these, an ethyl acetate fraction (Myagropsis yendoi ethyl acetate fraction: MYE) showed the highest anti-inflammatory activity based on inhibition of lipopolysaccharides (LPS)-induced nitric oxide (NO) production in RAW 264.7 cells. We thus investigated the molecular mechanisms underlying MYE's inhibitory effects. Pretreatment of cells with up to $30{\mu}g/mL$ of MYE significantly inhibited NO production and inducible nitric oxide synthase expression in a dose-dependent manner (P<0.05). Similarly, MYE markedly reduced the production of pro-inflammatory cytokines, such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor (TNF)-${\alpha}$, as well as their mRNA levels. While the nuclear translocation of nuclear factor-kappa B (NF-${\kappa}B$) was strongly suppressed by MYE, the activation of a nuclear factor erythroid 2-related factor (Nrf2) was increased. Moreover, MYE significantly reduced the phosphorylation of JNK, p38 MAPK, and phosphatidylinositol 3-kinase/Akt in LPS-stimulated cells. These results indicate that MYE contains anti-inflammatory compounds, and that it might be used as a dietary supplement for the prevention of inflammatory diseases.

Anti-Inflammatory Activity of Questinol Isolated from Marine-Derived Fungus Eurotium amstelodami in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages

  • Yang, Xiudong;Kang, Min-Cheol;Li, Yong;Kim, Eun-A;Kang, Sung-Myung;Jeon, You-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권10호
    • /
    • pp.1346-1353
    • /
    • 2014
  • In the present study, an anthraquinone derivative, questinol was successfully isolated from the broth extract of the marine-derived fungus Eurotium amstelodami for the first time. The structure of questinol was determined based on the analysis of the MS and NMR spectral data as well as comparison of those data with the published data. Moreover, the anti-inflammatory effect of questinol in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells was investigated. The results showed that questinol did not exhibit cytotoxicity in LPS-stimulated RAW 264.7 cells up to $200{\mu}M$. Questinol could significantly inhibit NO and $PGE_2$ production at indicated concentrations. Questinol was also found to inhibit the production of pro-inflammatory cytokines, including TNF-${\alpha}$, IL-1${\beta}$, and IL-6. Furthermore, the western blot analysis showed that questinol suppressed the expression level of iNOS in a dose-dependent manner. However, questinol could slightly inhibit the expression of COX-2 at the concentration of $200{\mu}M$. Therefore, our study suggests that questinol might be selected as a promising agent for the prevention and therapy of inflammatory disease.

EU Water Framework Directive-River Basin Management Planning in Ireland

  • Earle, R.;Almeida, G.
    • Environmental Engineering Research
    • /
    • 제15권2호
    • /
    • pp.105-109
    • /
    • 2010
  • The European Union (EU) Water Framework Directive (WFD) (2000/60/EC) was transposed into Irish law by Statutory Instrument Nos. 722 of 2003, 413 of 2005 and 218 of 2009, which set out a new strategy and process to protect and enhance Ireland's water resources and water-dependent ecosystems. The Directive requires a novel, holistic, integrated, and iterative process to address Ireland's natural waters based on a series of six-year planning cycles. Key success factors in implementing the Directive include an in-depth and balanced treatment of the ecological, economic, institutional and cultural aspects of river basin management planning. Introducing this visionary discipline for the management of sustainable water resources requires a solemn commitment to a new mindset and an overarching monitoring and management regime which hitherto has never been attempted in Ireland. The WFD must be implemented in conjunction with a myriad of complimentary directives and associated legislation, addressing such key related topics as flood/drought management, biodiversity protection, land use planning, and water/wastewater and diffuse pollution engineering and regulation. The critical steps identified for river basin management planning under the WFD include: 1) characterization and classification of water bodies (i.e., how healthy are Irish waters?), 2) definition of significant water pressures (e.g., agriculture, forestry, septic tanks), 3) enhancement of measures for designated protected areas, 4) establishment of objectives for all surface and ground waters, and 5) integrating these critical steps into a comprehensive and coherent river basin management plan and associated programme of measures. A parallel WFD implementation programme critically depends on an effective environmental management system (EMS) approach with a plan-do-check-act cycle applied to each of the evolving six-year plans. The proactive involvement of stakeholders and the general public is a key element of this EMS approach.

The Effects of Ischemic Postconditioning on Myocardial Function and Nitric Oxide Metabolites Following Ischemia-Reperfusion in Hyperthyroid Rats

  • Zaman, Jalal;Jeddi, Sajjad;Ghasemi, Asghar
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권6호
    • /
    • pp.481-487
    • /
    • 2014
  • Ischemic postconditioning (IPost) could decrease ischemia-reperfusion (IR) injury. It has not yet reported whether IPost is useful when ischemic heart disease is accompanied with co-morbidities like hyperthyroidism. The aim of this study was to examine the effect of IPost on myocardial IR injury in hyperthyroid male rats. Hyperthyroidism was induced with administration of thyroxine in drinking water (12 mg/L) over a period of 21 days. After thoracotomy, the hearts of control and hyperthyroid rats were perfused in the Langendorff apparatus and subjected to 30 minutes global ischemia, followed by 120 minutes reperfusion; IPost, intermittent early reperfusion, was induced instantly following ischemia. In control rats, IPost significantly improved the left ventricular developed pressure (LVDP) and ${\pm}dp/dt$ during reperfusion (p<0.05); however it had no effect in hyperthyroid rats. In addition, hyperthyroidism significantly increased basal $NO_x$ (nitrate+nitrite) content in serum ($125.5{\pm}5.4{\mu}mol/L$ vs. $102.8{\pm}3.7{\mu}mol/L$; p<0.05) and heart ($34.9{\pm}4.1{\mu}mol/L$ vs. $19.9{\pm}1.94{\mu}mol/L$; p<0.05). In hyperthyroid groups, heart $NO_x$ concentration significantly increased after IR and IPost, whereas in the control groups, heart $NO_x$ were significantly higher after IR and lower after IPost (p<0.05). IPost reduced infarct size (p<0.05) only in control groups. In hyperthyroid group subjected to IPost, aminoguanidine, an inducible nitric oxide (NO) inhibitor, significantly reduced both the infarct size and heart $NO_x$ concentrations. In conclusion, unlike normal rats, IPost cycles following reperfusion does not provide cardioprotection against IR injury in hyperthyroid rats; an effect that may be due to NO overproduction because it is restored by iNOS inhibition.