• Title/Summary/Keyword: i-NOS

Search Result 1,802, Processing Time 0.031 seconds

Preliminary study on the effect of inflamed TMJ synovial fluid on the intracellular calcium concentration and differential expression of iNOS and COX-2 in human immortalized chondrocyte C28/I2

  • Choi, Eun-Ah;Lee, Dong-Geun;Chae, Chang-Hoon;Chang, Young-Il;Park, Young-Ju;Kim, Young-Kyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.1
    • /
    • pp.36-41
    • /
    • 2006
  • Objective. The objective of this study was to examine the hypothesis that inflammatory synovial fluid from TMJ internal derangement initiates a transient increase in intracellular calcium concentration ([$Ca^{2+}$]i) in chondrocytes and the induced Ca2+ signaling affects iNOS/COX-2 gene expression patterns following exposure to inflamed synovial fluid. Materials and Methods. Two female adult patients with symptoms of TMD who agreed to participate in the study were selected for this study. Immortalized human juvenile costal chondrocyte C-28/I2 was grown to 80% confluency and synovial fluids from two patients were added respectively to culture media for 24 hours at the concentration of 100ng/10ml. Confocal laser scanning microscope (CLSM) was used to examine changes of intracellular calcium concentration ([$Ca^{2+}$]i). RT-PCR was performed to identify the expression profile of IL-1${\alpha}$, iNOS, COX-2. Results. Increased [$Ca^{2+}$]i was observed in chondrocytes subjected to inflamed synovial fluid compared to control cultures and in respective cultures exposed to inflamed synovial fluids from each patient, IL-1${\beta}$, COX-2 mRNA were detected. However, in neither case iNOS mRNA was expressed. IL-1${\alpha}$, COX-2, and iNOS mRNA were expressed in control culture. Conclusion. Our results show that immortalized chondrocytes cultured with inflamed synovial fluids from patients diagnosed as disc displacement without reduction and limitation in mouth opening showed increased calcium concentration and expression of COX-2 while inhibiting the production of iNOS, which in turn could adversely affect the chondrocytes in at least short term by hindering physiologic role of NO against inflammatory cascades. These findings suggest that inflamed synovial fluid may differentially regulate the transcriptomes of relevant inflammatory mediators, especially iNOS/COX-2 axis in chondrocytes through adjusting calcium transients.

The Effects of Bee Venom on iNOS, TNF-α and NF-kB in RAW 264.7 Cells (봉약침액(蜂藥鍼液)이 RAW 264.7 세포의 iNOS, TNF-α 및 NF-kB에 미치는 영향(影響 ))

  • Kim, Goon-Joong;Sim, Sung-Yong;Lee, Seong-No;Kim, Kee-Hyun
    • Journal of Pharmacopuncture
    • /
    • v.6 no.2
    • /
    • pp.45-56
    • /
    • 2003
  • Objective : The purpose of this study was to investigate the effects of Bee Venom on the lipopolysaccharide(LPS), sodium nitroprusside(SNP), hydrogen peroxide$(H_2O_2)$-induced expression inducilble nitric oxide synthetase(iNOS), tumor necrosis factor-${\alpha}$(TNF-${\alpha}$) and nuclear factor kappa B(NF-kB) in RAW 264.7 cells, a murine macrophage cell line. Method : The expressions of expression iNOS and TNF-${\alpha}$ were determined by western blotting with corresponding antibodies. The expressions of expression NF-kB was assayed by EMSA method. Results : 1. The 0.5, 1 and $5{\mu}g/mg$ of bee venom on LPS-induced expression of iNOS, the $5{\mu}g/mg$ of bee venom on SNP-induced expression of iNOS and the $1{\mu}g/mg$ of bee venom on $H_2O_2$-induced expression of iNOS compared with control were inhibited significantly. 2. The 0.5, 1 and $5{\mu}g/mg$ of bee venom inhibited significantly LPS and $H_2O_2$-induced expression of TNF-${\alpha}$ compared with control, respectively. The $0.5{\mu}g/mg$ of bee venom increased significantly SNP-induced expression of TNF-${\alpha}$ compared with control. 3. The $5{\mu}g/mg$ of bee venom on LPS-induced expression of NF-kB, the $0.5{\mu}g/mg$ of bee venom on SNP-induced expression of NF-kB and the 0.5, $5{\mu}g/mg$ of bee venom on $H_2O_2$-induced expression of NF-kB were inhibited significantly compared with control, respectively.

Immunoelectron Microscopic Study on the Nitric Oxide Synthase in Rat Salivary Glands (흰쥐 침샘의 Nitric Oxide Synthase에 관한 면역전자현미경적 연구)

  • Lee, Young-Hwan;Ko, Jeong-Sik;Park, Dae-Kyoon;Park, Kyung-Ho
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.221-233
    • /
    • 2008
  • Endogenous nitric oxide (NO) has been known to regulate many physiological and pathological processes, especially the glandular secretion and blood flow. However, nitric oxide synthase (NOS) responsible for NO synthesis has not been well studied ultrastructurally in rat salivary gland. The present study was performed to investigate the distribution of nitric Oxide synthase isoforms (endothelial. neuronal, and inducible NOS). Immunoelectron microscopic study, using monoclonal mouse anti-endothelial NOS, anti-neuronal NOS, and anti-inducible NOS, was performed in the salivary gland of rat. Endothelial NOS (eNOS)-positive immunoreactivities were most prominent in the secretory granules of serous cells of the salivary gland of the rat. Immunoreactivities were well concentrated on serous secretory granules in the serous cells. However, weak eNOS-positive immunoreactivity was observed in the mucous secretory granules of the mucous cells. Positive endothelial NOS (eNOS) immunoreactivities were most prominent in the secretory granules of intralobular ducts. Ductal secretory granules and acinar serous secretory granules have a similar pattern of labeling as eNOS suggestings. Neural NOS (nNOS)-positive immunoreactivity was not detected in duct systems or in acinar cells. Inducible NOS (iNOS)-positive immunoreactivity was not seen in acinar and ductal cells. These results reveal the presence of eNOS in the salivary gland of the rat, which may be related with regulation of the glandular secretion and blood flow through the gland.

Inhibition of the Induction of Nitric Oxide Synthase by Kobusin

  • Kim, Sang-Kyum;Pokharel, Yuba-Raj;Kim, Ok;Woo, Eun-Rhan;Kang, Keon-Wook
    • Toxicological Research
    • /
    • v.23 no.2
    • /
    • pp.123-126
    • /
    • 2007
  • We isolated a lignan, kobusin from Geranium thunbergii and studied its effect on the expression of inducible nitric oxide synthase (iNOS) gene in a monocyte/macrophage cell line, RAW264.7 cells. Kobusin inhibited lipopolysaccharide (LPS)-stimulated NO production and the expression of iNOS in a concentration-dependent manner. To identify the mechanistic basis for its inhibition of iNOS induction, we examined the effect of kobusin on both the luciferase reporter activity using $NF-{\kappa}B$ minimal promoter and the nuclear translocation of p65. Kobusin suppressed the reporter gene activity and the LPS-induced movement of p65 in to nucleus. $NF-{\kappa}B$ activation is controlled by the phosphorylation and subsequent degradation of $I-{\kappa}B{\alpha}$, and in the present study, we found that $I-{\kappa}B{\alpha}$ phosphorylation was also inhibited by kobusin. Our findings indicate that kobusin may provide a developmental basis for an agent against inflammatory diseases.

Inhibitory Effect of Sambucus sieboldiana var. pendula (Nakai) Extract on the mRNA and Protein Expression of iNOS and COX-2 in Raw 264.7 Cells (RAW 264.7 세포에서 말오줌나무 추출물의 iNOS, COX-2 단백질 및 mRNA 발현 억제 효과)

  • Lee, Jin-Young;Yoo, Dan-Hee;Chae, Jung-Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.178-183
    • /
    • 2017
  • This study examined a new functional cosmetic material possessing application possibility of Sambucus sieboldiana var. pendula (Nakai) (SS) extract. For this, we analyzed the toxic effect of the SS extract on macrophages (RAW 264.7 cells) by performing MTT assay. Results of the MTT assay showed ${\geq}100%$ cell viability after treatment with $500{\mu}g/ml$ SS extract. To determine the anti-inflammatory activity of the SS extract, we examined its inhibitory effect on lipopolysaccharide (LPS)-induced NO production in RAW 264.7 cells by performing Griess assay. Result of the Griess assay showed that the SS extract inhibited LPS-induced NO production in a concentration-dependent manner. Next, we examined the effect of the SS extract on the production of proinflammatory factors inducible NOS (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 cells. First, we determined the inhibitory effect of 50, 100, and $500{\mu}g/ml$ SS extract on iNOS and COX-2 protein expression by performing western blot analysis, with ${\beta}$-actin as a positive control. Results of western blotting showed that treatment with $500{\mu}g/ml$ SS extract decreased iNOS and COX-2 protein expression by 31.2% and 54.7%, respectively. Next, we determined the inhibitory effect of 50, 100, and $500{\mu}g/ml$ SS extract on iNOS and COX-2 mRNA expression by performing reverse transcription-polymerase chain reaction (PCR), with GAPDH as a positive control. Results of reverse transcription-PCR showed that treatment with $500{\mu}g/ml$ SS extract decreased the mRNA expression of iNOS and COX-2 by 72.2% and 89%, respectively. These results suggest that the SS extract is a highly valuable natural compound because of its functional components and anti-inflammatory activity.

Inducible Nitric Oxide Synthase mRNA Expression and Nitric Oxide Production in Silica-Induced Acute Inflammatory Lung Injury

  • Lee, Ji-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.233-239
    • /
    • 1998
  • Stimulated alveolar macrophages and neutrophils produce nitric oxide, a free radical by an inducible nitric oxide synthase(iNOS), which reacts with superoxide anion to form peroxynitrite, a more highly reactive toxic species. The objectives of the present study were to evaluate acute inflammatory lung injury and to determine iNOS mRNA induction and nitric oxide production by rat broncho-alveolar lavage cells following intratracheal treatment of silica. After 4 h exposure to silica, differential counts of broncho-alveolar lavage cells and lactate dehydrogenase(LDH) activity as well as total protein in the broncho-alveolar lavage fluid were determined. Broncho-alveolar lavage cells were also assayed for iNOS mRNA and the productions of nitrite and nitrate measured in the cells cultured. Differential analysis of broncho-alveolar lavage cells showed that the number of alveolar macrophages slightly decreased following silica treatment; however, red blood cells, lymphocytes, and neutrophils significantly were increased by 9-, 14-, and 119-fold following silica treatment, respectively, compared with the saline control. It was also found significant increases in the LDH activity and total protein in the lavage fluid obtained from silica-treated rats, indicating silica-induced acute lung injury. Northern blot analysis demonstrated that the steady state levels of iNOS mRNA in broncho-alveolar lavage cells were increased following silica treatment. The productions of nitrite and nitrate in the cultured cells were significantly increased by 2-fold following silica treatment, respectively, which were attenuated by the NOS inhibitor $N{\omega}-nitro-L-arginine-methyl$ ester(L-NAME) and partially reversed by L-arginine. These findings suggest that nitric oxide production in alveolar macrophages and recruited neutrophils is increased in response to silica. Nitric oxide may contribute in part to acute inflammatory lung injury.

  • PDF

Time Course of Inducible NOS Expression of Lung Tissue during Sepsis in a Rat Model (백서의 패혈증 모델에서 시간에 따른 폐조직에서의 Inducible Nitric Oxide Synthase 발현)

  • Kim, Joong Hee;Kim, Seong Chun;Kwon, Woon Yong;Suh, Gil Joon;Youn, Yeo Kyu
    • Journal of Trauma and Injury
    • /
    • v.21 no.2
    • /
    • pp.120-127
    • /
    • 2008
  • Purpose: Many studies on the time course of inducible nitric oxide synthase (iNOS) gene expression have been performed in the LPS (Lipopolysaccharide)-induced endotoxemic model, but there have been few experimental approaches to continuous peritonitis-induced sepsis model. We conducted this study to establish basic data for future sepsis-related research by investigating the time course of iNOS gene expression and the relationship with the production of inflammatory mediators in the early sepsis model induced by cecal ligation and puncture (CLP). Methods: Male Sprague-Dawley rats were operated on by sing the CLP method to induce of peritonitis; and then, they were sacrificed and samples of blood and lung tissues were obtained at various times (1,2,3,6,9 and 12 h after CLP). We observed the expression of iNOS mRNA from lung tissues and measured the synthesis of nitric oxide, $IL-1{\beta}$, and $TNF-{\alpha}$ from the blood. Results: iNOS mRNA began to be expressed at 3 h and was maintained untill 12 h after CLP. The nitric oxide concentration was increased significantly at 6 h, reached its peak level at 9 h, and maintained a plateau untill 12 h after CLP. $TNF-{\alpha}$ began to be detected at 3 h, increased gradually, and decreased steeply from 9 h after CLP. $IL-1{\beta}$ showed its peak level at 6 h after CLP, and tended to decrease without significance. Conclusion: We observed that the iNOS gene was expressed later in peritonitis-induced sepsis than in LPS-induced sepsis. Nitric oxide and key inflammatory mediators were also expressed later in peritonitis-induced sepsis than in LPS-induced sepsis.

Mechanisms of Siegesbeckia Glabrescens-induced Smooth Muscle Cell Apoptosis: Role of iNOS and PKC${\alpha}$ (희첨의 iNOS 발현과 PKC${\alpha}$ 억제를 통한 혈관평활근세포의 apoptosis 유도)

  • Lee, Seung-Yeul;Jun, Soo-Young;Kim, Jong-Bong;Jang, Hyo-Oil;Kim, Gil-Whon;Shin, Heung-Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1233-1240
    • /
    • 2006
  • We have recently demonstrated that Siegesbeckia glabrescens(SG), a herbal medicine, induces apoptosis via nitric oxide(NO) production in human aortic smooth muscle cells(HASMCS). However, the molecular pathways involved in SG-mediated apoptosis are not fully understand. In the present study, we investigated the cellular mechanisms of SG-induced apoptosis in HASMCS. SG induced NO production through inducible nitric oxide synthase(iNOS) induction. The apoptotic effect of SG was attenuated by L-NNA, a NOS inhibitor. In the presence of L-NNA, the degradation of procaspase-3 by SG was inhibited. SG treatment induced a decrease in Bcl-2 expression but did not affect the expression of Bax. In addition, SG treatment evoked both down-regulation of PKC ${\alpha}$ and inhibition of PKC ${\alpha}$ phosphorylation. These downregulations were reversed by addition of L-NNA. It seems likely to De a downregulation of PKC${\alpha}$ due to long term treatment with PMA. Taken together, these results suggest that apoptotic effects of SG may be due to NO production via iNOS mRNA expression. Furthermore, Bcl-2 and PKC${\alpha}$ downregulation, and caspase-3 activation may be involved in the mechanisms for apoptotic effects by SG.

The Role and Localization of Nitric Oxide Synthase in Neurogenic Inflammation of the Rat Airways (백서의 기도 선경성 염증에서 산화질소 합성효소(Nitric Oxide Synthase)의 역할과 분포)

  • Shim, Jae-Jeong;Lee, Sang-Yub;Lee, Sang-Hwa;Suh, Jung-Kyung;Kim, Chul-Hwan;Cho, Jae-Youn;In, Kwang-Ho;Yoo, Seo-Hwa;Kang, Kyung-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.3
    • /
    • pp.420-433
    • /
    • 1996
  • Background : There have been many debates about the effects of nitric oxide on the neurogenic inflammation. The role of nitric oxide in the neurogenic inflammation of airways will be required a better understanding of the localization and types of nitirc oxide synthase(NOS) activity in the neurogenic inflammation of airways. Method : To investigate the role of nitric oxide in airway neurogenic inflammation, 1) the effects of neurokinin receptor antagonist (FK224) and nitric oxide synthase inhibitor, $N^{\omega}$-nitro-L-arginine (L-NNA) on plasma extravastion were evaluated in four groups of Sprague-Dawley rats ; sham operation group(sham NANC group), electrical vagal stimulation group(NANC2 group), intravenous pretreatment groups with FK224 (1mg/kg ; FK224 group), and L-NNA(1mg/kg ; L-NNA group) 15 minutes before vagal NANC stimulation. 2) NOS activity in trachea with neurogenic inflammation was localized by immunohistochemical stain. Immunohistochemical stain was performed by antibodies specific for inflammatory cells(iNOS), brain(bNOS), and endothelium (eNOS) on trachea obtained from sham NANC, NANC2, and FK224 groups. Results : The results are that plasma extravsation in neurogenic inflammation of rat airways was inhibited by FK224, but enhanced by L-NNA pretreatment(P<0.05). There was significantly increased infiltration of inflammatory cells in subepithelium of neurogenic inflammatory trachea, but the reduction of subepithelial infiltration of inflammatory cells was observed after pretreatment with FK224(P<0.05). Immunostaining with anti-iNOS antibody showed strong reactivity only in infiltrated inflammatory cells in neurogenic rat trachea, and these iNOS reactivity was reduced by pretreatment with FK224. bNOS immunoreactivity was significantly increased only in the nerves both of neurogenic inflammatory and FK224 pretreated trachea compared with sham NANC trachea(p<0.05). eNOS immunoreactivity was not significant change in endothelium in neurogenic inflammation of rat trachea. Conclusion : These results suggest that nitric oxide released from iNOS in infiltrated inflammatory cells has main role in neurogenic inflammation of rat trachea. The presence of bNOS immunoreactivity in the nerves indicates that nitric oxide may be released from the nerves in rat trachea with neurogenic inflammation.

  • PDF

Studies on NO, nNOS, eNOS, iNOS and NE Expression by Acupuncture at SP4, KI4 and LR5 (족삼음경의 락혈에 시술된 침 자극에 의한 NO, NOS, NE 발현 연구)

  • Lee, Yumi;Shin, Wook;Choi, Donghee;Kim, Mirae;Na, Changsu;Youn, Daehwan
    • Korean Journal of Acupuncture
    • /
    • v.34 no.1
    • /
    • pp.37-46
    • /
    • 2017
  • Objectives : The acupuncture about acupoint affects the production of NO, NOS, and NE.Local action of acupuncture is important for acupuncture treatment. To prove this, the revelation degree of NO, NOS, and NE was observed by stimulating the acupuncture at the connecting point of SP4, KI4, and LR5 in the depths of Superficial layer, Middle layer and Deep layer. Methods : Needles were inserted into rats, on each right and left sides of the connecting point, SP4, KI4 and LR5 acupoints which are the stream points of the foot meridian. After insertion, needles were retained for three minutes. After the retention, rat was sacrificed via cardiac puncture, and tissues of each SP4, KI4 and LR5 point near meridian vessel was extracted to examine the changes in the expression of NO, NOS and NE. Results : In terms of the effect in NO production, there was significant increase in the Superficial layer, Middle layer and Deep layer at KI4. In terms of the effect in NE production, there was significant decrease in the Superficial layer at SP4 and increase in the Superficial layer, Middle layer and Deep layer at LR5. In terms of the effect in nNOS production, there was significant increase in the Superficial layer, Middle layer and Deep layer at SP4 also in the Superficial layer at KI4. In terms of the effect in eNOS production, there was a significant increase in the Superficial layer, Middle layer and Deep layer at SP4, KI4 and LR5. In terms of the effect in iNOS production, there was significant increase in the Superficial layer, Middle layer and Deep layer at SP4, KI4 and LR5. Conclusions : The effect of acupuncture applied at the connecting point of six meridians of the foot on the activities of NO, NOS and NE could be observed, and it can be induced from the effect of needle stimulation on disrupted local and systemic nervous responses.