• 제목/요약/키워드: i-Forest 알고리즘

검색결과 16건 처리시간 0.023초

산림지역에서의 LiDAR DEM 정확도 향상을 위한 FUSION 패러미터 선정에 관한 연구 (A Study on the Selection of Parameter Values of FUSION Software for Improving Airborne LiDAR DEM Accuracy in Forest Area)

  • 조승완;박주원
    • 한국산림과학회지
    • /
    • 제106권3호
    • /
    • pp.320-329
    • /
    • 2017
  • 본 연구는 항공 LiDAR DEM을 생산하는 FUSION 소프트웨어의 GroundFilter 모듈의 필터링 알고리즘(FA)과 GridSurfaceCreate 모듈의 보간 알고리즘(IA) 패러미터 수준 변화의 DEM 정확도에 대한 영향여부를 평가하고, 가장 정확한 해발고도 정보를 제공하는 LiDAR DEM을 생산하기 위한 패러미터 수준을 제시하고자 하였다. FA의 median 패러미터($F_{md}$), mean 패러미터($F_{mn}$) 및 IA의 median 패러미터($I_{md}$), mean 패러미터($I_{mn}$)에 대해 5개 수준(1, 3, 5, 7 및 9)을 적용한 조합의 변화에 따라 DEM의 정확도에 대한 영향 여부를 평가하기 위해 DEM 결과물의 해발고도와 실측한 현장 해발고도 간의 잔차를 종속변수로 선정하였다. 이후 패러미터의 수준 변화가 잔차 변화에 대한 영향 여부를 검정하는 다원분산분석을 실시하고, 다원분산분석 결과에서 유의미한 영향이 있는 변수의 패러미터 수준들을 잔차에 대한 영향이 차이가 나는 집단으로 그룹화하기 위해 사후검정인 Tukey HSD를 수행하였다. 다원분산분석 결과, 개별 $F_{md}$, $F_{mn}$, $I_{mn}$에서의 수준 변화와 잔차 변화 사이에 유의미한 관계가 있었으며, $I_{mn}$은 유의미한 영향이 없었다. 아울러 $F_{md}$$F_{mn}$의 패러미터 조합의 상호작용효과가 잔차 변화에 유의미한 영향을 미치는 것으로 나타났다. 이에 따라 $F_{md}$$F_{mn}$의 수준 및 $F_{md}{\ast}F_{mn}$ 상호작용 수준 그리고 $I_{mn}$의 수준이 DEM 정확도에 영향을 주는 요인으로 판단된다. $F_{md}{\ast}F_{mn}$의 조합에 대한 사후검정 결과, 잔차들의 평균 차이에 따라 네 개의 집단으로 나뉘었으며, 그중 '$9{\ast}3$' 조합이 가장 정확도가 높았으며, '$1{\ast}1$' 조합이 가장 낮은 정확도를 나타내었다. $I_{mn}$의 사후검정 결과, 세 개의 집단으로 나뉘었으며, 그중 수준 '3'과 '1'이 가장 낮은 잔차 평균값을 나타내었다. 따라서 가장 정확한 해발고도 정보를 제공하는 항공 LiDAR DEM의 생성을 위하여 $F_{md}{\ast}F_{mn}$의 조합이 수준 '$9{\ast}3$', $I_{mn}$은 수준 '3' 혹은 '1'인 조건을 우선적으로 고려해야할 것으로 판단된다. 본 연구는 LiDAR 자료 기반의 산림속성정보를 추출하는 연구들의 정확도 향상에 기여할 수 있을 것으로 사료된다.

하이브리드 최소신장트리 알고리즘 (Hybrid Minimum Spanning Tree Algorithm)

  • 이상운
    • 정보처리학회논문지A
    • /
    • 제17A권3호
    • /
    • pp.159-166
    • /
    • 2010
  • 본 논문에서는 여러 간선들이 동일한 가중치를 갖고 있는 그래프에서 최소신장트리 (Minimum Spanning Tree, MST)를 얻기 위해 Bor$\dot{u}$vka, Prim과 Kruskal MST 알고리즘을 실제 그래프에 적용한 결과 Bor$\dot{u}$vka와 Kruskal MST 알고리즘은 MST를 얻었지만 Prim MST 알고리즘은 MST를 얻는데 실패함을 보였다. 또한, Bor$\dot{u}$vka의 $2^{nd}$ Stage에서 Inter-MSF MWE를 선택하는 알고리즘이 복잡함을 알 수 있었다. Bor$\dot{u}$vka의 $1^{st}$ Stage는 최소한의 간선들로 최소신장 포레스트 (Minimum Spanning Forest, MSF)를 얻는 장점을 갖고 있으며, Kruskal MST 알고리즘은 모든 간선들을 대상으로 하지만 항상 MST를 얻는 장점을 갖고 있다. 따라서 본 논문은 Bor$\dot{u}$vka의 $1^{st}$ Stage와 Kruskal MST 알고리즘의 장점을 결합한 하이브리드 MST 알고리즘을 제안하였다. 하이브리드 MST 알고리즘을 추가적으로 6개의 그래프에 적용한 결과 Kruskal MST 알고리즘과 동일하게 항상 MST를 얻음을 검증하였다. 또한, 알고리즘 수행속도와 메모리 용량 측면에서 비교한 결과 하이브리드 MST 알고리즘이 가장 좋은 성능을 보였다. 따라서 제안된 알고리즘을 일반화된 MST 알고리즘으로 채택이 가능할 것이다.

머신 러닝 알고리즘을 이용한 역방향 깃발의 에너지 하베스팅 효율 예측 (Prediction of Energy Harvesting Efficiency of an Inverted Flag Using Machine Learning Algorithms)

  • 임세환;박성군
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.31-38
    • /
    • 2021
  • The energy harvesting system using an inverted flag is analyzed by using an immersed boundary method to consider the fluid and solid interaction. The inverted flag flutters at a lower critical velocity than a conventional flag. A fluttering motion is classified into straight, symmetric, asymmetric, biased, and over flapping modes. The optimal energy harvesting efficiency is observed at the biased flapping mode. Using the three different machine learning algorithms, i.e., artificial neural network, random forest, support vector regression, the energy harvesting efficiency is predicted by taking bending rigidity, inclination angle, and flapping frequency as input variables. The R2 value of the artificial neural network and random forest algorithms is observed to be more than 0.9.

단백체 스펙트럼 데이터의 분류를 위한 랜덤 포리스트 기반 특성 선택 알고리즘 (Feature Selection for Classification of Mass Spectrometric Proteomic Data Using Random Forest)

  • 온승엽;지승도;한미영
    • 한국시뮬레이션학회논문지
    • /
    • 제22권4호
    • /
    • pp.139-147
    • /
    • 2013
  • 본 논문에서는 질량 분석 방법에 의하여 산출된 단백체 데이터(mass spectrometric proteomic data)의 분류 분석(classification analysis)을 위한 새로운 특성 선택(feature selection) 방법을 제안한다. 이 방법은 i)높은 상관관계를 가지는 중복된 특성을 효과적으로 제거하는 전처리 단계와 ii)토너먼트(tournament) 전략을 사용하여 최적 특성 부분집합(optimal feature subset)을 탐색해 내는 단계로 구성되어 있다. 제안되는 방법을 실제 암진단에 사용되는 공개된 혈액 단백체 데이터에 적용하였으며 널리 사용되는 타 방법과 비교할 때 우수한 성능과 균형된 특이도와 민감도를 달성함을 실증하였다.

핑거프린트와 랜덤포레스트 기반 실내 위치 인식 시스템 설계와 구현 (Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest)

  • 이선민;문남미
    • 방송공학회논문지
    • /
    • 제23권1호
    • /
    • pp.154-161
    • /
    • 2018
  • 최근 스마트폰 사용자가 늘어남에 따라 실내 위치인식 서비스에 대한 연구의 중요성이 증가하고 있다. 실내 위치인식에는 주로 WiFi, Bluetooth 등이 연구되고 있으나, 본 연구에서는 대부분의 실내 공간에 설치되어 있고 스마트폰에 WiFi 기능이 탑재되어 있어 접근성이 좋은 WiFi를 사용한다. 본 연구에서는 수집된 WiFi의 수신신호세기를 이용하는 핑거프린트 기술과 다변량 분류법 중 Ensemble learning method인 랜덤포레스트 알고리즘을 사용한다. 핑거프린트의 데이터로는 수신신호세기와 더불어 Mac주소를 사용해 총 4개의 라디오 맵을 만들어 사용하였다. 실험은 제한된 실내공간에서 진행하였고 실험분석을 위해 본 연구에서 제안하는 방법과 유사한 기존의 랜덤포레스트를 사용하는 실내 위치인식 시스템과 비교 분석하였다. 실험 결과 기존의 랜덤포레스트를 사용하는 실내 위치인식 시스템보다 본 연구에서 제안하는 시스템의 위치인식 정확도가 약 5.8% 높고 학습 데이터 개수에 상관없이 위치인식 속도가 일정하게 유지 되며 기존 방식 보다 더 빠름을 입증하였다.

농림위성을 위한 기계학습을 활용한 복사전달모델기반 대기보정 모사 알고리즘 개발 및 검증: 식생 지역을 위주로 (Machine Learning-Based Atmospheric Correction Based on Radiative Transfer Modeling Using Sentinel-2 MSI Data and ItsValidation Focusing on Forest)

  • 강유진;김예진;임정호;임중빈
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.891-907
    • /
    • 2023
  • Compact Advanced Satellite 500-4 (CAS500-4) is scheduled to be launched to collect high spatial resolution data focusing on vegetation applications. To achieve this goal, accurate surface reflectance retrieval through atmospheric correction is crucial. Therefore, a machine learning-based atmospheric correction algorithm was developed to simulate atmospheric correction from a radiative transfer model using Sentinel-2 data that have similarspectral characteristics as CAS500-4. The algorithm was then evaluated mainly for forest areas. Utilizing the atmospheric correction parameters extracted from Sentinel-2 and GEOKOMPSAT-2A (GK-2A), the atmospheric correction algorithm was developed based on Random Forest and Light Gradient Boosting Machine (LGBM). Between the two machine learning techniques, LGBM performed better when considering both accuracy and efficiency. Except for one station, the results had a correlation coefficient of more than 0.91 and well-reflected temporal variations of the Normalized Difference Vegetation Index (i.e., vegetation phenology). GK-2A provides Aerosol Optical Depth (AOD) and water vapor, which are essential parameters for atmospheric correction, but additional processing should be required in the future to mitigate the problem caused by their many missing values. This study provided the basis for the atmospheric correction of CAS500-4 by developing a machine learning-based atmospheric correction simulation algorithm.

앙상블 학습기법을 활용한 보행자 교통사고 심각도 분류: 대전시 사례를 중심으로 (Classifying the severity of pedestrian accidents using ensemble machine learning algorithms: A case study of Daejeon City)

  • 강흥식;노명규
    • 디지털융복합연구
    • /
    • 제20권5호
    • /
    • pp.39-46
    • /
    • 2022
  • 교통사고와 사회·경제적 손실 간의 연계성이 확인됨에 따라 사고 데이터에 기반을 둔 안전 정책 마련 및 중상·사망 등 그 심각도가 높은 교통사고의 절감 방안의 필요성이 제기되고 있다. 본 연구에서는 인구 대비 교통사고 사망자 비율이 높은 대전시를 대상지역으로 설정하고 보행자 교통사고 데이터를 수집한 후, 기계학습을 통해 최적알고리즘과 심각도 분류의 주요 인자를 도출하였다. 연구의 결과에 따르면, 적용한 9개 알고리즘 중 앙상블 기반의 학습 기법인 AdaBoost (Adaptive Boosting)와 RF (Random Forest)가 최적의 성능을 보여주었다. 이를 기반으로 도출된 대전시 보행자 교통사고 심각도의 주요 인자는 보행자의 연령이 70대 및 20대이거나 사고유형이 횡단사고에 의한 경우로 나타남에 따라 대전시 보행자 사고 저감 대책을 위한 고려요인으로 제안하였다.

북한지역의 소기후 추정을 위한 수문단위 설정 (Zoning Hydrologic Units for Geospatial Climatology in North Korea)

  • 김진희;윤진일
    • 한국농림기상학회지
    • /
    • 제13권1호
    • /
    • pp.20-27
    • /
    • 2011
  • 북한지역에 대해 좌표내장 수치기후지도를 제작하기 위한 선결조건으로서 국지 소기후 추정모형의 최소 공간적용단위인 표준유역(Hydrologic Unit)이 설정되어야 한다. Arc Hydro 기반의 유역추출 알고리즘을 ASTER GDEM에 적용하고, 북한의 5대강(예성강, 대동강, 청천강, 압록강, 두만강) 및 산경도에 나타난 산맥체계에 의해 보완함으로써 신뢰성 높은 북한지역 표준유역도를 제작하였다. 이 표준유역도에 의하면 북한지역은 21개의 대권역, 93개의 중권역, 885개의 소유역으로 구성된다. 기존 남한 표준유역도 840개와 결합하고 각각 소기후모형을 적용할 경우 한반도 전역을 1,725개의 소기후구로 하는 상세 농업기후지대구분이 가능해진다.

스마트 팩토리를 위한 예지보전 기술 (Predictive maintenance technology for smart factory)

  • 권대훈;오창헌
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.172-174
    • /
    • 2021
  • 기존 산업에서는 제한적 모니터링 및 정비로 인한 불필요한 유휴 시간 발생 등의 예방정비의 형태로 보전을 실시하였다. 하지만 4차 산업혁명이 도래되고 광업, 제조, 석유 및 가스, 상업적 농업을 포함한 많은 산업 분야에서 실시간 모니터링이 가능하고, 정비로 인한 유휴 시간의 최소화를 원하게 되었다. 특히, 설비 및 장비가 고장 나기 전 고장을 예측하여 유지 보수함으로써 비용을 절감하고 운영 효율성을 극대화 할 수 있는 예지보전에 대한 관심이 높아지고 있다. 본 연구에서는 스마트 팩토리의 장비의 이상 상태를 사전에 검증이 가능하고 이상 상태를 실시간 모니터링이 가능한 예지보전 기술에 대해 살펴본다.

  • PDF

앙상블 학습 기반 국내 도서의 해외 판매 굿셀러 예측 및 굿셀러 리뷰 키워드 분석 (Ensemble Learning-Based Prediction of Good Sellers in Overseas Sales of Domestic Books and Keyword Analysis of Reviews of the Good Sellers)

  • 김도영;김나연;김현희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권4호
    • /
    • pp.173-178
    • /
    • 2023
  • 한국 문학이 세계적으로 관심을 받게 됨에 따라 해외 출판시장에서의 수요가 지속적으로 증가하고 있다. 따라서 해외 출판시 도서 판매량의 예측과 과거 해외 독자들의 선호도가 높았던 도서들의 특징을 분석하는 것이 중요하다. 본 논문에서는 최근 5년간 해외 출간된 도서 중에서 굿셀러로 분류되는 누적 5천 부 이상 판매 여부 예측 모델을 제안하고 굿셀러의 요인이 되는 변수들을 분석하였다. 이를 위해, XGBoost, Gradient Boosting, Adaboost, LightGBM, Random Forest의 다섯 개 앙상블 학습 모델과 Support Vector Machine, Logistic Regression, Deep Learning을 적용한 결과, 불균형 데이터 문제 해결에 앙상블 알고리즘이 큰 효과를 보였음을 확인했으며, 그 중에서도 LightGMB 모델이 99.86%의 AUC 값을 얻어 가장 좋은 예측 성능을 보임을 검증하였다. 예측을 위해 사용된 변수 중 가장 중요한 변수는 작가의 해외 출간 횟수로 나타났으며, 평점 평균, 상위 출판 시장 규모를 가진 국가에서 출판 여부와 평점 참여자 수 등이 중요한 변수로 나타났다. 또한, 굿셀러 도서에 대한 독자들의 반응을 분석하기 위해서, 굿셀러 도서 중에서도 가장 많이 판매된 4권의 작품 리뷰에 대해 텍스트 마이닝을 실시하였다. 분석 결과 스토리, 등장인물, 작가 순으로 관심을 둔 리뷰가 많았음을 알 수 있었으며, 평점이 낮은 리뷰로부터 번역 키워드가 도출된 것으로 보아, 번역에 대한 지원을 확대하는 것이 필요할 것으로 보인다.