DOI QR코드

DOI QR Code

A Study on the Selection of Parameter Values of FUSION Software for Improving Airborne LiDAR DEM Accuracy in Forest Area

산림지역에서의 LiDAR DEM 정확도 향상을 위한 FUSION 패러미터 선정에 관한 연구

  • Cho, Seungwan (School of Forestry Sciences and Landscape Architecture, Kyungpook National University) ;
  • Park, Joowon (School of Forestry Sciences and Landscape Architecture, Kyungpook National University)
  • 조승완 (경북대학교 산림과학.조경학부) ;
  • 박주원 (경북대학교 산림과학.조경학부)
  • Received : 2017.07.10
  • Accepted : 2017.09.20
  • Published : 2017.09.30

Abstract

This study aims to evaluate whether the accuracy of LiDAR DEM is affected by the changes of the five input levels ('1','3','5','7' and '9') of median parameter ($F_{md}$), mean parameter ($F_{mn}$) of the Filtering Algorithm (FA) in the GroundFilter module and median parameter ($I_{md}$), mean parameter ($I_{mn}$) of the Interpolation Algorithm (IA) in the GridSurfaceCreate module of the FUSION in order to present the combination of parameter levels producing the most accurate LiDAR DEM. The accuracy is measured by the residuals calculated by difference between the field elevation values and their corresponding DEM elevation values. A multi-way ANOVA is used to statistically examine whether there are effects of parameter level changes on the means of the residuals. The Tukey HSD is conducted as a post-hoc test. The results of the multi- way ANOVA test show that the changes in the levels of $F_{md}$, $F_{mn}$, $I_{mn}$ have significant effects on the DEM accuracy with the significant interaction effect between $F_{md}$ and $F_{mn}$. Therefore, the level of $F_{md}$, $F_{mn}$, and the interaction between two variables are considered to be factors affecting the accuracy of LiDAR DEM as well as the level of $I_{mn}$. As the results of the Tukey HSD test on the combination levels of $F_{md}{\ast}F_{mn}$, the mean of residuals of the '$9{\ast}3$' combination provides the highest accuracy while the '$1{\ast}1$' combination provides the lowest one. Regarding $I_{mn}$ levels, the mean of residuals of the both '3' and '1' provides the highest accuracy. This study can contribute to improve the accuracy of the forest attributes as well as the topographic information extracted from the LiDAR data.

본 연구는 항공 LiDAR DEM을 생산하는 FUSION 소프트웨어의 GroundFilter 모듈의 필터링 알고리즘(FA)과 GridSurfaceCreate 모듈의 보간 알고리즘(IA) 패러미터 수준 변화의 DEM 정확도에 대한 영향여부를 평가하고, 가장 정확한 해발고도 정보를 제공하는 LiDAR DEM을 생산하기 위한 패러미터 수준을 제시하고자 하였다. FA의 median 패러미터($F_{md}$), mean 패러미터($F_{mn}$) 및 IA의 median 패러미터($I_{md}$), mean 패러미터($I_{mn}$)에 대해 5개 수준(1, 3, 5, 7 및 9)을 적용한 조합의 변화에 따라 DEM의 정확도에 대한 영향 여부를 평가하기 위해 DEM 결과물의 해발고도와 실측한 현장 해발고도 간의 잔차를 종속변수로 선정하였다. 이후 패러미터의 수준 변화가 잔차 변화에 대한 영향 여부를 검정하는 다원분산분석을 실시하고, 다원분산분석 결과에서 유의미한 영향이 있는 변수의 패러미터 수준들을 잔차에 대한 영향이 차이가 나는 집단으로 그룹화하기 위해 사후검정인 Tukey HSD를 수행하였다. 다원분산분석 결과, 개별 $F_{md}$, $F_{mn}$, $I_{mn}$에서의 수준 변화와 잔차 변화 사이에 유의미한 관계가 있었으며, $I_{mn}$은 유의미한 영향이 없었다. 아울러 $F_{md}$$F_{mn}$의 패러미터 조합의 상호작용효과가 잔차 변화에 유의미한 영향을 미치는 것으로 나타났다. 이에 따라 $F_{md}$$F_{mn}$의 수준 및 $F_{md}{\ast}F_{mn}$ 상호작용 수준 그리고 $I_{mn}$의 수준이 DEM 정확도에 영향을 주는 요인으로 판단된다. $F_{md}{\ast}F_{mn}$의 조합에 대한 사후검정 결과, 잔차들의 평균 차이에 따라 네 개의 집단으로 나뉘었으며, 그중 '$9{\ast}3$' 조합이 가장 정확도가 높았으며, '$1{\ast}1$' 조합이 가장 낮은 정확도를 나타내었다. $I_{mn}$의 사후검정 결과, 세 개의 집단으로 나뉘었으며, 그중 수준 '3'과 '1'이 가장 낮은 잔차 평균값을 나타내었다. 따라서 가장 정확한 해발고도 정보를 제공하는 항공 LiDAR DEM의 생성을 위하여 $F_{md}{\ast}F_{mn}$의 조합이 수준 '$9{\ast}3$', $I_{mn}$은 수준 '3' 혹은 '1'인 조건을 우선적으로 고려해야할 것으로 판단된다. 본 연구는 LiDAR 자료 기반의 산림속성정보를 추출하는 연구들의 정확도 향상에 기여할 수 있을 것으로 사료된다.

Keywords

References

  1. Bright, B.C., Hicke, J.A. and Hudak, A.T. 2012. Estimating aboveground carbon stocks of a forest affected by mountain pine beetle in Idaho using lidar and multispectral imagery. Remote Sensing of Environment 124: 270-281. https://doi.org/10.1016/j.rse.2012.05.016
  2. Cho, K.H., Heo, J., Jung, J.H., Kim C.J. and Kim, K.M. 2011. Review and Comparative Analysis of Forest Biomass Estimation Using Remotely Sensed Data: from Five Different Perspectives. Journal of the Korean Society for Geo-spatial Information Science 19(1): 87-96.
  3. Choi, Y.W., Sohn, D.J. and Cho, G.S. 2009. Applying Image processing Algorithm to Raw LiDAR Data for Extracting Ground Information. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 27(5): 575-583.
  4. Edson, C. and Wing, M.G. 2011. Airborne light detection and ranging (LiDAR) for individual tree stem location, height, and biomass measurements. Remote Sensing 3(11): 2494-2528. https://doi.org/10.3390/rs3112494
  5. Erdody, T.L. and Moskal, L.M. 2010. Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sensing of Environment 114(4): 725-737. https://doi.org/10.1016/j.rse.2009.11.002
  6. Estornell, J., Ruiz, L.A., Velazquez-Marti, B. and Hermosilla, T. 2011. Analysis of the factors affecting LiDAR DTM accuracy in a steep shrub area. International Journal of Digital Earth 4(6): 521-538. https://doi.org/10.1080/17538947.2010.533201
  7. Ferster, C.J., Coops, N.C. and Trofymow, J. A. 2009. Aboveground large tree mass estimation in a coastal forest in British Columbia using plot-level metrics and individual tree detection from lidar. Canadian Journal of Remote Sensing 35(3): 270-275. https://doi.org/10.5589/m09-014
  8. Fuchs, H., Magdon, P., Kleinn, C. and Flessa, H. 2009. Estimating aboveground carbon in a catchment of the Siberian forest tundra: Combining satellite imagery and field inventory. Remote Sensing of Environment 113: 518-531. https://doi.org/10.1016/j.rse.2008.07.017
  9. Goodwin, N.R., Coops, N.C. and Culvenor, D.S. 2006. Assessment of forest structure with airborne LiDAR and the effects of platform altitude. Remote Sensing of Environment 103(2): 140-152. https://doi.org/10.1016/j.rse.2006.03.003
  10. Hwang, S.R. and Lee, I.P. 2011. Comparative Analysis and Accuracy Improvement on Ground Point Filtering of Airborne LIDAR Data for Forest Terrain Modeling. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 29(6): 641-650. https://doi.org/10.7848/ksgpc.2011.29.6.641
  11. Hyyppa, J., Hyyppa, H., Litkey, P., Yu, X., Haggren, H., Ronnholm, P., Pyysalo, U., Pitkanen, J. and Maltamo, M. 2004. Algorithms and methods of airborne laser scanning for forest measurements. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36(8): 82-89.
  12. Kim, Y., Yang, Z., Cohen, W.B., Pflugmacher, D., Lauver, C.L. and Vankat, J.L. 2009. Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-footprint lidar data. Remote Sensing of Environment 113(11): 2499-2510. https://doi.org/10.1016/j.rse.2009.07.010
  13. Kobler, A., Pfeifer, N., Ogrinc, P., Todorovski, L., Ostir, K. and Dzeroski, S. 2007. Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain. Remote Sensing of Environment 108(1): 9-23. https://doi.org/10.1016/j.rse.2006.10.013
  14. Kraus, K. and Pfeifer, N. 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing 53(4): 193-203. https://doi.org/10.1016/S0924-2716(98)00009-4
  15. Magnusson, M., Fransson, J.E. and Holmgren, J. 2007. Effects on estimation accuracy of forest variables using different pulse density of laser data. Forest Science 53(6): 619-626.
  16. McGaughey, R.J. 2016. Fusion/LDV : Software for LiDAR Data Analysis and Visualization. United States Department of Agriculture, Forest Service, Pacific Northwest Research Station, Seattle, W.A., USA. pp. 1-206.
  17. Meng, X., Currit, N. and Zhao, K. 2010. Ground filtering algorithms for airborne LiDAR data: A review of critical issues. Remote Sensing 2(3): 833-860. https://doi.org/10.3390/rs2030833
  18. Minh, D.H.T., Le Toan, T., Rocca, F., Tebaldini, S., Villard, L., Rejou-Mechain, M., Phillips, O.L., Feldpausch, T.R., Dubois-Fernandez, P., Scipal, K. and Chave, J. 2016. SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guiana. Remote Sensing of Environment 175: 138-147. https://doi.org/10.1016/j.rse.2015.12.037
  19. Park, J., Choi, H.T. and Cho, S. 2016. A study on the effects of airborne LiDAR data-based DEM-generating techniques on the quality of the final products for forest areas :Focusing on GroundFilter and GridsurfaceGreate in FUSION software. Journal of the Korean Association of Geographic Information Studies 19(1): 154-166 https://doi.org/10.11108/kagis.2016.19.1.154
  20. Reutebuch, S.E., Andersen, H.E. and McGaughey, R.J. 2005. Light detection and ranging (LIDAR): an emerging tool for multiple resource inventory. Journal of Forestry 103(6): 286-292.
  21. Richardson, J.J., Moskal, L.M. and Kim, S. H. 2009. Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR. Agricultural and Forest Meteorology 149(6): 1152-1160. https://doi.org/10.1016/j.agrformet.2009.02.007
  22. Saarela, S., Schnell, S., Tuominen, S., Balazs, A., Hyyppa, J., Grafstrom, A. and Stahl, G. 2016. Effects of positional errors in model-assisted and model-based estimation of growing stock volume. Remote Sensing of Environment 172: 101-108. https://doi.org/10.1016/j.rse.2015.11.002
  23. Shanghai Huace Navigation Technology Ltd. CHC X91+ GNSS Technical Specification. pp. 2
  24. Yoo, H.H., Kim, E.M. and Chung, D.K. 2005. Assessment of Classification Accuracy of Ground and Nonground Points from LIDAR Data. Journal of the Korean Society of Civil Engineers D 25(6D): 929-935.