• 제목/요약/키워드: i

검색결과 94,045건 처리시간 0.078초

하수관거시스템 개량 우선순위 결정 모형 (Rehabilitation Priority Decision Model for Sewer Systems)

  • 이정호;박무종;김중훈
    • 한국방재학회 논문집
    • /
    • 제8권6호
    • /
    • pp.7-14
    • /
    • 2008
  • 하수관거시스템 개량의 주된 목적은 불명수(Inflow/Infiltration, I/I)를 제거함으로써 그 성능을 향상시키는데 있다. 이때 전체 하수관거시스템 내에서 개개 관거별 I/I 발생량을 정량화할 수 있다면, 전체 하수관거시스템 내에서 소유역별 해당 정보의 추출이 보다 명확해질 수 있다. 그러나 실제 현장에서는 예산 및 시간의 제약 때문에 개개 관거의 I/I 발생 정보의 획득은 거의 불가능하다. 본 연구에서는 하수 관거별 I/I 발생량을 AHP(Analytic Hierarch Process)를 이용하여 정량화하였으며, 산정된 관거별 I/I 발생량을 이용하여 효율적인 하수과거 개량 사업 시행을 위한 개량 우선순위 결정 모형(Rehabiliation Priority Decision Model for sewer system, RPDM)을 개발하였다. 개개 관거별 I/I 발생량 산정 결과에 기반하여 RPDM은 개량이 시행되는 기간 동안 발생하는 I/I 발생량을 최소화하는 소유역별 최적 개량 우선순위(Optimal Rehabilitation Priority, ORP)를 유전자 알고리즘을 이용하여 결정한다. 이때 최적 개량 우선순위에 따른 소유역별 개량 시행 시 발생하는 이익은 개량 기간 동안 하수처리장으로 들어가는 I/I의 하수처리비용(Waste Water Treatment Cost, WWTC)에 대한 절감을 의미한다. 본 연구에서는 개발된 RPDM에 의한 최적 개량 우선순위의 결과는 일반적인 하수관거 개량사업의 우선순위 결정 방법인 점수가중평가법(Numerical Weighting Method, NWM)과 최악의 개량순서에 따른 결과들과 비교되었으며, 개량 기간 동안의 I/I 처리비용이 점수가중평가법에 비하여 22%, 최악의 개량순서에 비하여 40% 감소하는 것으로 나타났다.

이차 발전비용함수를 사용한 경제급전문제의 균형-교환 최적화 (Balance-Swap Optimization of Economic Load Dispatch Problem using Quadratic Fuel Cost Function)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.243-250
    • /
    • 2014
  • 본 논문은 이차 발전비용 함수를 적용하는 경제급전의 최적화 문제에 대한 균형-교환 최적화 알고리즘을 제안하였다. 제안된 알고리즘은 초기치 $P_i{\leftarrow}P_i^{max}$, (${\Sigma}P_i^{max}$ > $P_d$)에 대해 ${\Sigma}P_i=P_d$일 때까지 $_{max}\{F(P_i)-F(P_i-{\alpha})\}$, ${\alpha}=_{min}(P_i-P_i^{min})$인 발전기 i의 출력량을 $P_i{\leftarrow}P_i-{\alpha}$로 균형과정을 수행하고, 교환과정은 $_{max}\{F(P_i)-F(P_i-{\beta})\}$ > $_{min}\{F(P_i+{{\beta})-F(P_j)\}$, $i{\neq}j$, ${\beta}$ = 1.0, 0.1, 0.1, 0.01, 0.001에 대해 $P_i{\leftarrow}P_i-{\beta}$, $P_j{\leftarrow}P_j+{\beta}$로 수행하였다. 제안된 방법을 15, 20과 38-발전기 사례에 적용한 결과 간단하면서도 항상 동일한 결과로 가장 좋은 결과를 나타내었다. 또한, 73-발전기를 통합하여 경제급전을 수행한 결과 독립적으로 운영하는 경우에 비해 발전비용을 현저히 절약할 수 있음을 보였다.

ON FINITENESS PROPERTIES ON ASSOCIATED PRIMES OF LOCAL COHOMOLOGY MODULES AND EXT-MODULES

  • Chu, Lizhong;Wang, Xian
    • 대한수학회지
    • /
    • 제51권2호
    • /
    • pp.239-250
    • /
    • 2014
  • Let R be a commutative Noetherian (not necessarily local) ring, I an ideal of R and M a finitely generated R-module. In this paper, by computing the local cohomology modules and Ext-modules via the injective resolution of M, we proved that, if for an integer t > 0, dim$_RH_I^i(M){\leq}k$ for ${\forall}i$ < t, then $$\displaystyle\bigcup_{i=0}^{j}(Ass_RH_I^i(M))_{{\geq}k}=\displaystyle\bigcup_{i=0}^{j}(Ass_RExt_R^i(R/I^n,M))_{{\geq}k}$$ for ${\forall}j{\leq}t$ and ${\forall}n$ >0. This shows that${\bigcup}_{n>0}(Ass_RExt_R^i(R/I^n,M))_{{\geq}k}$ is a finite set for ${\forall}i{\leq}t$. Also, we prove that $\displaystyle\bigcup_{i=1}^{r}(Ass_RM/(x_1^{n_1},x_2^{n_2},{\ldots},x_i^{n_i})M)_{{\geq}k}=\displaystyle\bigcup_{i=1}^{r}(Ass_RM/(x_1,x_2,{\ldots},x_i)M)_{{\geq}k}$ if $x_1,x_2,{\ldots},x_r$ is M-sequences in dimension > k and $n_1,n_2,{\ldots},n_r$ are some positive integers. Here, for a subset T of Spec(R), set $T_{{\geq}i}=\{{p{\in}T{\mid}dimR/p{\geq}i}\}$.

RESULTS OF CERTAIN LOCAL COHOMOLOGY MODULES

  • Mafi, Amir;Talemi, Atiyeh Pour Eshmanan
    • 대한수학회보
    • /
    • 제51권3호
    • /
    • pp.653-657
    • /
    • 2014
  • Let R be a commutative Noetherian ring, I and J two ideals of R, and M a finitely generated R-module. We prove that $$Ext^i{_R}(R/I,H^t{_{I,J}}(M))$$ is finitely generated for i = 0, 1 where t=inf{$i{\in}\mathbb{N}_0:H^2{_{I,J}}(M)$ is not finitely generated}. Also, we prove that $H^i{_{I+J}}(H^t{_{I,J}}(M))$ is Artinian when dim(R/I + J) = 0 and i = 0, 1.

STABILITY OF THE RECIPROCAL DIFFERENCE AND ADJOINT FUNCTIONAL EQUATIONS IN m-VARIABLES

  • Lee, Young Whan;Kim, Gwang Hui
    • 충청수학회지
    • /
    • 제23권4호
    • /
    • pp.731-739
    • /
    • 2010
  • In this paper, we prove stability of the reciprocal difference functional equation $$r\(\frac{{\sum}_{i=1}^{m}x_i}{m}\)-r\(\sum_{i=1}^{m}x_i\)=\frac{(m-1){\prod}_{i=1}^{m}r(x_i)}{{\sum}_{i=1}^{m}{\prod}_{k{\neq}i,1{\leq}k{\leq}m}r(x_k)$$ and the reciprocal adjoint functional equation $$r\(\frac{{\sum}_{i=1}^{m}x_i}{m}\)+r\(\sum_{i=1}^{m}x_i\)=\frac{(m+1){\prod}_{i=1}^{m}r(x_i)}{{\sum}_{i=1}^{m}{\prod}_{k{\neq}i,1{\leq}k{\leq}m}r(x_k)$$ in m-variables. Stability of the reciprocal difference functional equation and the reciprocal adjoint functional equation in two variables were proved by K. Ravi, J. M. Rassias and B. V. Senthil Kumar [13]. We extend their result to m-variables in similar types.

Normal Interpolation on AX = Y in CSL-algebra AlgL

  • Jo, Young Soo;Kang, Joo Ho
    • Kyungpook Mathematical Journal
    • /
    • 제45권2호
    • /
    • pp.293-299
    • /
    • 2005
  • Let ${\cal{L}}$ be a commutative subspace lattice on a Hilbert space ${\cal{H}}$ and X and Y be operators on ${\cal{H}}$. Let $${\cal{M}}_X=\{{\sum}{\limits_{i=1}^n}E_{i}Xf_{i}:n{\in}{\mathbb{N}},f_{i}{\in}{\cal{H}}\;and\;E_{i}{\in}{\cal{L}}\}$$ and $${\cal{M}}_Y=\{{\sum}{\limits_{i=1}^n}E_{i}Yf_{i}:n{\in}{\mathbb{N}},f_{i}{\in}{\cal{H}}\;and\;E_{i}{\in}{\cal{L}}\}.$$ Then the following are equivalent. (i) There is an operator A in $Alg{\cal{L}}$ such that AX = Y, Ag = 0 for all g in ${\overline{{\cal{M}}_X}}^{\bot},A^*A=AA^*$ and every E in ${\cal{L}}$ reduces A. (ii) ${\sup}\;\{K(E, f)\;:\;n\;{\in}\;{\mathbb{N}},f_i\;{\in}\;{\cal{H}}\;and\;E_i\;{\in}\;{\cal{L}}\}\;<\;\infty,\;{\overline{{\cal{M}}_Y}}\;{\subset}\;{\overline{{\cal{M}}_X}}$and there is an operator T acting on ${\cal{H}}$ such that ${\langle}EX\;f,Tg{\rangle}={\langle}EY\;f,Xg{\rangle}$ and ${\langle}ET\;f,Tg{\rangle}={\langle}EY\;f,Yg{\rangle}$ for all f, g in ${\cal{H}}$ and E in ${\cal{L}}$, where $K(E,\;f)\;=\;{\parallel}{\sum{\array}{n\\i=1}}\;E_{i}Y\;f_{i}{\parallel}/{\parallel}{\sum{\array}{n\\i=1}}\;E_{i}Xf_{i}{\parallel}$.

  • PDF

POSITIVE INTERPOLATION PROBLEMS IN ALG𝓛

  • KANG, JOO HO;KIM, KI SOOK
    • 호남수학학술지
    • /
    • 제26권4호
    • /
    • pp.379-389
    • /
    • 2004
  • Given operators X and Y acting on a Hilbert space ${\mathcal{H}}$, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_i=Y_i$, for $i=1,2,{\cdots},n$. In this article, we obtained the following : Let ${\mathcal{H}}$ be a Hilbert space and let ${\mathcal{L}}$ be a commutative subspace lattice on ${\mathcal{H}}$. Let X and Y be operators acting on ${\mathcal{H}}$. Then the following statements are equivalent. (1) There exists an operator A in $Alg{\mathcal{L}}$ such that AX = Y, A is positive and every E in ${\mathcal{L}}$ reduces A. (2) sup ${\frac{{\parallel}{\sum}^n_{i=1}\;E_iY\;f_i{\parallel}}{{\parallel}{\sum}^n_{i=1}\;E_iX\;f_i{\parallel}}}:n{\in}{\mathbb{N}},\;E_i{\in}{\mathcal{L}}$ and $f_i{\in}{\mathcal{H}}<{\infty}$ and <${\sum}^n_{i=1}\;E_iY\;f_i$, ${\sum}^n_{i=1}\;E_iX\;f_i>\;{\geq}0$, $n{\in}{\mathbb{N}}$, $E_i{\in}{\mathcal{L}}$ and $f_i{\in}H$.

  • PDF

Moieties of Complement iC3b Recognized by the I-domain of Integrin αXβ2

  • Choi, Jeongsuk;Buyannemekh, Dolgorsuren;Nham, Sang-Uk
    • Molecules and Cells
    • /
    • 제43권12호
    • /
    • pp.1023-1034
    • /
    • 2020
  • Complement fragment iC3b serves as a major opsonin for facilitating phagocytosis via its interaction with complement receptors CR3 and CR4, also known by their leukocyte integrin family names, αMβ2 and αXβ2, respectively. Although there is general agreement that iC3b binds to the αM and αX I-domains of the respective β2-integrins, much less is known regarding the regions of iC3b contributing to the αX I-domain binding. In this study, using recombinant αX I-domain, as well as recombinant fragments of iC3b as candidate binding partners, we have identified two distinct binding moieties of iC3b for the αX I-domain. They are the C3 convertase-generated N-terminal segment of the C3b α'-chain (α'NT) and the factor I cleavage-generated N-terminal segment in the CUBf region of α-chain. Additionally, we have found that the CUBf segment is a novel binding moiety of iC3b for the αM I-domain. The CUBf segment shows about a 2-fold higher binding activity than the α'NT for αX I-domain. We also have shown the involvement of crucial acidic residues on the iC3b side of the interface and basic residues on the I-domain side.

Mercerization of Wood: Formation and Reversibility of Na-cellulose I in Reaction Wood

  • Kim, Nam-Hun;Kim, Dae-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권6호
    • /
    • pp.1-7
    • /
    • 2003
  • The phase transformation from cellulose I into cellulose II in woods by way of Na-cellulose I was examined by x-ray diffraction analysis.The formation of Na-cellulose I in woods increased with the increase of treating time in alkali solution. When compression wood was treated with 20% NaOH solution at room temperature for 1 day, the x-ray diagram showed only Na-cellulose I. On the other hand, the x-ray diagram of tension wood showed a mixture of cellulose I and Na-cellulose I. Cellulose I of tension wood could not be transformed completely into Na-cellulose I even after 10-day treatment, but was transformed into Na-cellulose I after 30-day treatment. Na-cellulose I of compression and tension woods was converted to the cellulose I pattern and the mixture of cellulose I and cellulose II, respectively, after washing with water and drying at 20℃. Cellulose I regenerated from Na-cellulose I in wood could not be converted to cellulose II by delignification. Thus, it revealed that the delignification of the alkali-treated wood did not affect their cellulose structures. From the results, therefore, it can be concluded that lignin in woods prevents the formation of the stable Na-cellulose I and the conversion from cellulose I to cellulose II. This means that the conversion of chain polarity of wood cellulose hardly occurs during mercerization because cellulose microfibrils are fixed by lignin which not to be intermingled.

Study on iodine Labelling (II) Efficient of Labelling Rose Bengal, Hippuran, and Human Serum Albumin in Small Scale

  • Kim, Jaerok
    • Nuclear Engineering and Technology
    • /
    • 제4권3호
    • /
    • pp.186-193
    • /
    • 1972
  • Rose $Bengal-^{131}$ /I, $Hippuran-^{131}$ /I, $H.S.A-^{131}$ /I 등을 효과적으로 합성하기 위해 표지 반응액의 pH, 염의함량, 반응액중의 완충용액의 부피 및 합성장치등에 따르는 표지 반응수율을 검토하였다. Rose $Bengal-^131{ }$I 및 $Hippuran-^{131}$ /I 의 반응수율은 PH 5.6에서, $H.S.A-^{131}$ /I 반응수율은 pH 8.5에서 각각 가장 좋았다. 반응액중에 함유된 염은 $Hippuran-^{131}$ /I의 생성반응을 크게 저해 시켰으며 H.S.A.의 표지수율은 어느 범위안에서 오히려 약간 향상시켰다. Rose $Bengal-^{131}$ /I 나 $Hippuran-^{131}$ /I 를 소규모 합성할 경우는 밀폐된 용기가 효과적이었다. 이상의 결과에 따라 더 높은 표지수율과 좋은 재현성을 얻을 수 있는 반응조건을 확립하였으며 이에 따라 환원제가 함유된 국산 $Na^{131}$ /I를 사용하더라도 Rose $Bengal-^{131}$ /I과 $Hippurn=^{131}$ /I의 표지수율을 높일 수 있었다.

  • PDF