• 제목/요약/키워드: hypoxia-inducible factor-1

검색결과 160건 처리시간 0.034초

Hypoxia Inducible Factor-1α Directly Induces the Expression of Receptor Activator of Nuclear Factor-κB Ligand in Chondrocytes

  • Baek, Kyunghwa;Park, Hyun-Jung;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제41권1호
    • /
    • pp.9-15
    • /
    • 2016
  • Receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) is an osteoblast/stromal cell-derived essential factor for osteoclastogenesis. During endochondral bone formation, hypertrophic chondrocytes calcify cartilage matrix that is subsequently resorbed by osteoclasts in order to be replaced by new bone. Hypoxia-induced upregulation of RANKL expression has been previously demonstrated in an in vitro system using osteoblasts; however, the involved mechanism remains unclear in chondrocytes. In the present study, we investigated whether hypoxia regulates RANKL expression in ATDC5 cells, a murine chondrogenic cell line, and hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) mediates hypoxia-induced RANKL expression by transactivating the RANKL promoter. The expression levels of RANKL mRNA and protein, as well as HIF-$1{\alpha}$ protein, were significantly increased in ATDC5 cells under hypoxic condition. Constitutively active HIF-$1{\alpha}$ alone significantly increased the levels of RANKL expression under normoxic conditions, whereas dominant negative HIF-$1{\alpha}$ reduced hypoxia-induced RANKL expression. HIF-$1{\alpha}$ increased RANKL promoter reporter activity in a HIF-$1{\alpha}$ binding element-dependent manner in ATDC5 cells. Hypoxia-induced RANKL levels were much higher in differentiated ATDC5 cells, as compared to proliferating ATDC5 cells. These results suggested that under hypoxic conditions, HIF-$1{\alpha}$ mediates induction of RANKL expression in chondrocytes; in addition, hypoxia plays a role in osteoclastogenesis during endochondral bone formation, at least in part, through the induction of RANKL expression in hypertrophic chondrocytes.

HIF-1α-Dependent Induction of Carboxypeptidase A4 and Carboxypeptidase E in Hypoxic Human Adipose-Derived Stem Cells

  • Moon, Yunwon;Moon, Ramhee;Roh, Hyunsoo;Chang, Soojeong;Lee, Seongyeol;Park, Hyunsung
    • Molecules and Cells
    • /
    • 제43권11호
    • /
    • pp.945-952
    • /
    • 2020
  • Hypoxia induces the expression of several genes through the activation of a master transcription factor, hypoxia-inducible factor (HIF)-1α. This study shows that hypoxia strongly induced the expression of two carboxypeptidases (CP), CPA4 and CPE, in an HIF-1α-dependent manner. The hypoxic induction of CPA4 and CPE gene was accompanied by the recruitment of HIF-1α and upregulation in the active histone modification, H3K4me3, at their promoter regions. The hypoxic responsiveness of CPA4 and CPE genes was observed in human adipocytes, human adipose-derived stem cells, and human primary fibroblasts but not mouse primary adipocyte progenitor cells. CPA4 and CPE have been identified as secreted exopeptidases that degrade and process other secreted proteins and matrix proteins. This finding suggests that hypoxia changes the microenvironment of the obese hypoxic adipose tissue by inducing the expression of not only adipokines but also peptidases such as CPA4 and CPE.

Long Noncoding RNA Expression Profiling Reveals Upregulation of Uroplakin 1A and Uroplakin 1A Antisense RNA 1 under Hypoxic Conditions in Lung Cancer Cells

  • Byun, Yuree;Choi, Young-Chul;Jeong, Yongsu;Yoon, Jaeseung;Baek, Kwanghee
    • Molecules and Cells
    • /
    • 제43권12호
    • /
    • pp.975-988
    • /
    • 2020
  • Hypoxia plays important roles in cancer progression by inducing angiogenesis, metastasis, and drug resistance. However, the effects of hypoxia on long noncoding RNA (lncRNA) expression have not been clarified. Herein, we evaluated alterations in lncRNA expression in lung cancer cells under hypoxic conditions using lncRNA microarray analyses. Among 40,173 lncRNAs, 211 and 113 lncRNAs were up- and downregulated, respectively, in both A549 and NCI-H460 cells. Uroplakin 1A (UPK1A) and UPK1A-antisense RNA 1 (AS1), which showed the highest upregulation under hypoxic conditions, were selected to investigate the effects of UPK1A-AS1 on the expression of UPK1A and the mechanisms of hypoxia-inducible expression. Following transfection of cells with small interfering RNA (siRNA) targeting hypoxia-inducible factor 1α (HIF-1α), the hypoxia-induced expression of UPK1A and UPK1A-AS1 was significantly reduced, indicating that HIF-1α played important roles in the hypoxia-induced expression of these targets. After transfection of cells with UPK1A siRNA, UPK1A and UPK1A-AS1 levels were reduced. Moreover, transfection of cells with UPK1A-AS1 siRNA downregulated both UPK1A-AS1 and UPK1A. RNase protection assays demonstrated that UPK1A and UPK1A-AS1 formed a duplex; thus, transfection with UPK1A-AS1 siRNA decreased the RNA stability of UPK1A. Overall, these results indicated that UPK1A and UPK1A-AS1 expression increased under hypoxic conditions in a HIF-1α-dependent manner and that formation of a UPK1A/UPK1A-AS1 duplex affected RNA stability, enabling each molecule to regulate the expression of the other.

Backbone Resonance Assignment of a Proteolysis-Resistant Fragment in the Oxygen-Dependent Degradation Domain of the Hypoxia Inducible Factor 1α

  • Kim, Do-Hyoung;Lee, Si-Hyung;Chi, Seung-Wook;Nam, Ki Hoon;Han, Kyou-Hoon
    • Molecules and Cells
    • /
    • 제27권4호
    • /
    • pp.493-496
    • /
    • 2009
  • Hypoxia-inducible factor $1{\alpha}$ ($HIF1{\alpha}$) is a transcription factor that plays a key role in the adaptation of cells to low oxygen stress and oxygen homeostasis. The oxygen-dependent degradation (ODD) domain of $HIF1{\alpha}$ responsible for the negative regulation of $HIF1{\alpha}$ in normoxia is intrinsically unfolded. Here, we carried out the backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignment of a proteolysis-resistant fragment (residues 404-477) in the $HIF1{\alpha}$ ODD domain using NMR spectroscopy. About 98% (344/352) of all the $^1HN$, $^{15}N$, $^{13}C{\alpha}$, $^{13}C{\beta}$, and $^{13}CO$ resonances were unambiguously assigned. The results will be useful for further investigation of the structural and dynamic states of the $HIF1{\alpha}$ ODD domain and its interaction with binding partners.

Functional Role of a Conserved Sequence Motif in the Oxygen-dependent Degradation Domain of Hypoxia-inducible Factor 1α in the Recognition of p53

  • Chi, Seung-Wook
    • Genomics & Informatics
    • /
    • 제6권2호
    • /
    • pp.72-76
    • /
    • 2008
  • Hypoxia-inducible factor $1{\alpha}\;(HIF1{\alpha})$ is a transcription factor that plays a key role in the adaptation of cells to low oxygen stress and oxygen homeostasis. The oxygen-dependent degradation (ODD) domain of $HIF1{\alpha}$ is responsible for the negative regulation of $HIF1{\alpha}$ in normoxia. The interactions of the $HIF1{\alpha}$ ODD domain with partner proteins such as von Hippel-Lindau tumor suppressor (pVHL) and p53 are mediated by two sequence motifs, the N- and C-terminal ODD(NODD and CODD). Multiple sequence alignment with $HIF1{\alpha}$ homologs from human, monkey, pig, rat, mouse, chicken, frog, and zebrafish has demonstrated that the NODD and CODD motifs have noticeably high conservation of the primary sequence across different species and isoforms. In this study, we carried out molecular dynamics simulation of the structure of the $HIF1{\alpha}$ CODD motif in complex with the p53 DNA-binding domain (DBD). The structure reveals specific functional roles of highly conserved residues in the CODD sequence motif of $HIF1{\alpha}$ for the recognition of p53.

The novel peptide F29 facilitates the DNA-binding ability of hypoxia-inducible factor-1α

  • Choi, Su-Mi;Park, Hyun-Sung
    • BMB Reports
    • /
    • 제42권11호
    • /
    • pp.737-742
    • /
    • 2009
  • Hypoxia-inducible factor-$1{\alpha}/{\beta}$ (HIF-$1{\alpha}/{\beta}$) is a heterodimeric transcriptional activator that mediates gene expression in response to hypoxia. HIF-$1{\alpha}$ has been noted as an effective therapeutic target for ischemic diseases such as myocardiac infarction, stroke and cancer. By using a yeast two-hybrid system and a random peptide library, we found a 16-mer peptide named F29 that directly interacts with the bHLH-PAS domain of HIF-$1{\alpha}$. We found that F29 facilitates the interaction of the HIF-$1{\alpha/\beta}$ heterodimer with its target DNA sequence, hypoxia-responsive element (HRE). The transient transfection of an F29-expressing plasmid increases the expression of both an HRE-driven luciferase gene and the endogenous HIF-1 target gene, vascular endothelial growth factor (VEGF). Taken together, we conclude that F29 increases the DNA-binding ability of HIF-$1{\alpha}$, leading to increased expression of its target gene VEGF. Our results suggest that F29 can be a lead compound that directly targets HIF-$1{\alpha}$ and increases its activity.

Estrogen receptor is downregulated by expression of HIF-1a/VP16

  • Cho, Jung-Yoon;Lee, Young-Joo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.228.2-229
    • /
    • 2003
  • Estrogen Receptor is a ligand-activated transcription factor. The concentration of the receptor is a major component that regulates expression of estrogen-responsive genes. We have studied mechanism of estrogen receptor alpha (ER${\alpha}$) downregulation by HIF-1 using HIF-1${\alpha}$/VP16 constructs. ER${\alpha}$ is known to be downregulated under hypoxic condition. Transcriptional response under hypoxia is mediated through Hypoxia-inducible factor-1 (HIF-1), a transcription factor that is usullaly degraded but stabilized under hypoxia. (omitted)

  • PDF

Hypoxia-inducible Factor 1 Alpha (HIF-1α) as a Prognostic Indicator in Patients with Gastric Tumors: A Meta-analysis

  • Zhang, Zhi-Gang;Zhang, Qiu-Ning;Wang, Xiao-Hu;Tian, Jin-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권7호
    • /
    • pp.4195-4198
    • /
    • 2013
  • Background and Objective: Though researched for years, the prognostic role of hypoxia-inducible factor 1 alpha (HIF-$1{\alpha}$) in gastric cancer is still controversial. We thus undertook a systematic review to assess the relationship. Method: A systematically literature search of Pubmed, Embase, Web of Science, China Biological Medicine Disc and Cochrane Library was undertaken in February 2013, and the reference lists of articles were retrieved. Results: 12 trials (1,555 participants) were included to assess the association between HIF-$1{\alpha}$ expression and survival. Summary hazard ratios (HRs) were calculated. HIF-$1{\alpha}$ expression was significantly correlated with poor overall survival of gastric cancer patients (HR=1.34, 95%CI: 1.13-1.58; P=0.0009), but not with poor disease free survival of gastric cancer patients (HR=1.67, 95%CI: 0.99-2.82; P=0.06). Conclusion: HIF-$1{\alpha}$ was associated with poor OS, but not DFS, especially for Asian patients. But studies evaluating relationships of HIF-$1{\alpha}$ with OS and DFS in non-Asian gastric cancer patients appear needed.

저근백피 추출물이 유선암 세포에서의 신생혈관 미치는 영향 (Effects on Inhibition of Angiogenesis in MCF-7 Cells by the Aqueous Root Extract of Ailanthus Altissima)

  • 정지학;윤용갑;전병훈;박혜련;안원근
    • 동의생리병리학회지
    • /
    • 제18권6호
    • /
    • pp.1613-1616
    • /
    • 2004
  • The cellular response to hypoxia is controlled to a large degree by the transcription factor Hypoxia-inducible factor-1(HIF-1). HIF-1 is a transcription factor that is activated by hypoxia and plays a critical role in the development of the cancer phenotype. HIF-1 regulates transcription of a number of genes crucial for tumor survival under hypoxic conditions, including vascular endothelial growth factor(VEGF), erythropoietin(Epo) and several glycolytic enzymes. Tumors in which hypoxia can not induce HIF-1 transcriptional activity remain small and fail to metastasize. In this study, we examined whether aqueous root extract of Ailanthus altissima (REA) downregulate HIF-1, VEGF and p53, and raise the possibility that depletion of these proteins and the anti proliferative activities of REA have any effects on inhibition of angiogenesis in MCF-7 cells. Pharmacologic targeting of specific signal transduction pathways related to oncogenic transformation is a promising approach in cancer treatment. Therefore, REA could be a candidate drug for further clinical development.

Biphasic Regulation of Mitogen-Activated Protein Kinase Phosphatase 3 in Hypoxic Colon Cancer Cells

  • Kim, Hong Seok;Kang, Yun Hee;Lee, Jisu;Han, Seung Ro;Kim, Da Bin;Ko, Haeun;Park, Seyoun;Lee, Myung-Shin
    • Molecules and Cells
    • /
    • 제44권10호
    • /
    • pp.710-722
    • /
    • 2021
  • Hypoxia, or low oxygen tension, is a hallmark of the tumor microenvironment. The hypoxia-inducible factor-1α (HIF-1α) subunit plays a critical role in the adaptive cellular response of hypoxic tumor cells to low oxygen tension by activating gene-expression programs that control cancer cell metabolism, angiogenesis, and therapy resistance. Phosphorylation is involved in the stabilization and regulation of HIF-1α transcriptional activity. HIF-1α is activated by several factors, including the mitogen-activated protein kinase (MAPK) superfamily. MAPK phosphatase 3 (MKP-3) is a cytoplasmic dual-specificity phosphatase specific for extracellular signal-regulated kinase 1/2 (Erk1/2). Recent evidence indicates that hypoxia increases the endogenous levels of both MKP-3 mRNA and protein. However, its role in the response of cells to hypoxia is poorly understood. Herein, we demonstrated that small-interfering RNA (siRNA)-mediated knockdown of MKP-3 enhanced HIF-1α (not HIF-2α) levels. Conversely, MKP-3 overexpression suppressed HIF-1α (not HIF-2α) levels, as well as the expression levels of hypoxia-responsive genes (LDHA, CA9, GLUT-1, and VEGF), in hypoxic colon cancer cells. These findings indicated that MKP-3, induced by HIF-1α in hypoxia, negatively regulates HIF-1α protein levels and hypoxia-responsive genes. However, we also found that long-term hypoxia (>12 h) induced proteasomal degradation of MKP-3 in a lactic acid-dependent manner. Taken together, MKP-3 expression is modulated by the hypoxic conditions prevailing in colon cancer, and plays a role in cellular adaptation to tumor hypoxia and tumor progression. Thus, MKP-3 may serve as a potential therapeutic target for colon cancer treatment.