• Title/Summary/Keyword: hyperspectral sensing

Search Result 170, Processing Time 0.028 seconds

Estimation of Water Depth in Coastal Area Using Hyperspectral Satellite Imagery (하이퍼스펙트럴 위성영상을 이8한 연안지역의 수심산정)

  • Lee Jong-Chool;Kim Dae-Hyun;Lee Young-Do;Yu Young-Hwa
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.165-169
    • /
    • 2006
  • Purpose of this research is estimation of water depth by hyperspectral remote sensing in area that access of ship is difficult This research used EO-1 Hyperion satellite imagery. Atmospheric and geometric correction is executed. Compress of band used MNF transforms. Diffuse Attenuation Coefficient of target area is decided in imagery for water depth estimation. Determination of Emdmember in pixel is using Linear Spectral Unmixing techniques. Water depth estimated using this result.

  • PDF

EO-1 Hyperion / Landsat-7 ETM+ 영상을 활용한 영상분류 정확도 분석

  • Jang Se-Jin;Chae Ok-Sam
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.223-227
    • /
    • 2006
  • 최근 위성기술의 발전은 크게 두 가지 방향으로 진행되고 있다. 하나는 고해상도(High Resolution)라는 말로 대표되는 공간해상도(Spatial Resolution)의 향상이고, 다른 하나는 초분광(Hyperspectral)으로 대표되는 분광해상도(Spectral Resolution)의 향상이다. 특히 초분광영상(Hyperspectral Image)은 지상피복 및 대상물에 대해 실험실에서 얻을 수 있을 정도의 연속적이고 좁은 파장 간격의 분광정보를 제공하고 있어, 기존에 사용하던 다중분광영상(Multispectral Image) 보다 많은 양의 정보를 사용자에게 제공한다. 본 논문에서는 다중분광영상과 초분광영상의 분광 정보를 활용한 영상분류능력을 비교분석하고 그 결과를 평가하였다. 분석결과는 다중분광영상에서 식별이 어려웠던 초지, 농지, 나지에 대한 분석 능력이 초분광영상에서 상당히 향상됨으로써 감독분류에서 약 20% 정도의 정확도 향상을 가져왔으며, 무감독분류의 경우에는 미소한 차이로 그 정확도가 향상된다는 것이다. 이런 결과는 향후 초분광영상의 토지 피복분류 및 대상물 탐사에 긍정적인 활용 방안을 제시할 수 있음을 알려주고 있다.

  • PDF

Automatic Noise Band Elemination of Hyperion Hyperspectral Image using Fractal Dimension (프랙탈 차원을 이용한 Hyperion 초분광 영상의 자동 노이즈 밴드 제거)

  • Chang, An-Jin;Kim, Yong-Il;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.219-223
    • /
    • 2008
  • 초분광 영상은 기존의 다중분광 영상보다 많은 파장대의 영상을 취득하기 때문에 다양한 분야의 연구에 이용되고 있다. 하지만 밴드별로 취득하는 파장대가 짧고 밴드수가 많아, 밴드간의 높은 상관관계 및 노이즈 밴드가 존재한다. 이로 인해 기존에 알려진 분석기법의 적용결과가 제대로 도출되지 않는다. 따라서 초분광 영상을 이용할 경우, 노이즈가 많이 포함된 밴드를 제거한 후 영상분석을 하는 것이 보다 효율적이다. 본 연구에서는 초분광 영상(Hyperspectral Image)의 전처리 과정 중 노이즈 밴드 제거에 초점을 맞추었으며, 이를 위해 프랙탈 차원을 이용하였다. 프랙탈 차원 측정방법 중 삼각기둥 표면적 기법을 이용하였다. 프랙탈 차원을 측정하고, Continuum Removal 기법을 이용하여 경향을 살펴보았다. 경험적으로 구한 임계값을 통해 상대적으로 정보량이 적은 밴드를 노이즈 밴드로 판단하여 제거하였다. 실험 영상으로는 EO-1 위성에서 취득되는 Hyperion 초분광 영상을 사용하였다. 실험 결과 프랙탈 분석을 통해 Hyperion 초분광 영상의 노이즈 밴드를 자동으로 추출하여 제거할 수 있음을 확인하였다.

  • PDF

Application of EO-1 HYPERION Data to Classifying Geological Materials

  • Choe, E.Y.;Yoon, W.J.;Kang, M.K.;Kim, T.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.576-578
    • /
    • 2003
  • Hyperspectral image divides VNIR region to over 200 bands which can show continuous spectrum with 10 nm spectral resolution. This property is useful in geology where a spectral feature which is decided by chemical compositions and crystalline structures is recorded well. While this field has been studied variously in foreign countries, the studies are in the early stage in Korea. In this study, characteristic materials associated with AMD were classified by using EO-1 HYPERION data which is a spaceborne hyperspectral image and topographical map and DEM and geochemical map were analyzed in conjunction with the image in order to examine that classified minerals are secondary minerals by AMD.

  • PDF

Recent Trends of Hyperspectral Imaging Technology (초분광 이미징 기술동향)

  • Lee, M.S.;Kim, K.S.;Min, G.;Son, D.H.;Kim, J.E.;Kim, S.C.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.1
    • /
    • pp.86-97
    • /
    • 2019
  • Over the past 30 years, significant developments have been made in hyperspectral imaging (HSI) technologies that can provide end users with rich spectral, spatial, and temporal information. Owing to the advances in miniaturization, cost reduction, real-time processing, and analytical methods, HSI technologies have a wide range of applications from remote-sensing to healthcare, military, and the environment. In this study, we focus on the latest trends of HSI technologies, analytical methods, and their applications. In particular, improved machine learning techniques, such as deep learning, allows the full use of HSI technologies in classification, clustering, and spectral mixture algorithms. Finally, we describe the status of HSI technology development for skin diagnostics.

Maximum Simplex Volume based Landmark Selection for Isomap (최대 부피 Simplex 기반의 Isomap을 위한 랜드마크 추출)

  • Chi, Junhwa
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.509-516
    • /
    • 2013
  • Since traditional linear feature extraction methods are unable to handle nonlinear characteristics often exhibited in hyperspectral imagery, nonlinear feature extraction, also known as manifold learning, is receiving increased attention in hyperspectral remote sensing society as well as other community. A most widely used manifold Isomap is generally promising good results in classification and spectral unmixing tasks, but significantly high computational overhead is problematic, especially for large scale remotely sensed data. A small subset of distinguishing points, referred to as landmarks, is proposed as a solution. This study proposes a new robust and controllable landmark selection method based on the maximum volume of the simplex spanned by landmarks. The experiments are conducted to compare classification accuracies with standard deviation according to sampling methods, the number of landmarks, and processing time. The proposed method could employ both classification accuracy and computational efficiency.

Object-based Data Fusion Methods using Hyperspectral remote sensing data (초분광 원격탐사자료를 이용한 객체기반 영상융합 기법 연구)

  • Yoon, Yeo-Sang
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.247-250
    • /
    • 2007
  • 다양한 지구관측위성으로부터 획득된 윈격탐사 자료들은 맴핑 환경모니터링, 재난 관리,도심 모니터링등과 같은 다양한 분야의 정보를 생성하고 분석하는데 많은 잠재력을 가지고 있다. 특별히 고해상도 위성영상의 경우 도심 지역의 다양한 정보를 손쉽게 파악이 가능하며, 이를 기반으로 효과적인 도심 관리 및 시설 투자가 이루어 질 수 있다 그러나 이러한 고해상도 위성영상의 경우 공간 해상력은 매우 좋으나분광해상력 측면에서는 많은 한계를 보이고 있는 단점을 가지고 있다 이를 보완하기 위한 방법으로 고해상도 흑백모드영상과 중${\cdot}$ 저해상도 다중분광영상 혹은 초분광영상간 영상 합성기법을 통해 분광 능력의 향상을 도모하는 기법들이 연구되어져 왔으며보다 최적의 결과를 위한 다양한 알고리즘들이 개발되어 왔다 본 연구에서는 이러한 영상융합결과의 향상을 위한 방법으로 객체기반 단위의 영상합성 방법을 제시하였으벽이 결과와 화소기반 영상융합 결과와의 비교${\cdot}$ 분석도 수행해 보았다. 이를 위해 Landsat-7 ETM+ 혹백영상과 Hyperion 초분광영상을 실험대상으로 선정하여 분석하였으벽 대표적인 영상융합방법인 PCA 융합기법을 활용하였다.

  • PDF

Anomaly Detection from Hyperspectral Imagery using Transform-based Feature Selection and Local Spatial Auto-correlation Index (자료 변환 기반 특징 선택과 국소적 자기상관 지수를 이용한 초분광 영상의 이상값 탐지)

  • Park, No-Wook;Yoo, Hee-Young;Shin, Jung-Il;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.357-367
    • /
    • 2012
  • This paper presents a two-stage methodology for anomaly detection from hyperspectral imagery that consists of transform-based feature extraction and selection, and computation of a local spatial auto-correlation statistic. First, principal component transform and 3D wavelet transform are applied to reduce redundant spectral information from hyperspectral imagery. Then feature selection based on global skewness and the portion of highly skewed sub-areas is followed to find optimal features for anomaly detection. Finally, a local indicator of spatial association (LISA) statistic is computed to account for both spectral and spatial information unlike traditional anomaly detection methodology based only on spectral information. An experiment using airborne CASI imagery is carried out to illustrate the applicability of the proposed anomaly detection methodology. From the experiments, anomaly detection based on the LISA statistic linked with the selection of optimal features outperformed both the traditional RX detector which uses only spectral information, and the case using major principal components with large eigen-values. The combination of low- and high-frequency components by 3D wavelet transform showed the best detection capability, compared with the case using optimal features selected from principal components.

Change Detection Using Spectral Unmixing and IEA(Iterative Error Analysis) for Hyperspectral Images (IEA(Iterative Error Analysis)와 분광혼합분석기법을 이용한 초분광영상의 변화탐지)

  • Song, Ahram;Choi, Jaewan;Chang, Anjin;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.361-370
    • /
    • 2015
  • Various algorithms such as Chronochrome(CC), Principle Component Analysis(PCA), and spectral unmixing have been studied for hyperspectral change detection. Change detection by spectral unmixing offers useful information on the nature of the change compared to the other change detection methods which provide only the locations of changes in the scene. However, hyperspectral change detection by spectral unmixing is still in an early stage. This research proposed a new approach to extract endmembers, which have identical properties in temporally different images, by Iterative Error Analysis (IEA) and Spectral Angle Mapper(SAM). The change map obtained from the difference of abundance efficiently showed the changed pixels. Simulated images generated from Compact Airborne Spectrographic Imager (CASI) and Hyperion were used for change detection, and the experimental results showed that the proposed method performed better than CC, PCA, and spectral unmixing using N-FINDR. The proposed method has the advantage of automatically extracting endmembers without prior information, and it could be applicable for the real images composed of many materials.

Hazardous and Noxious Substances (HNSs) Styrene Detection Using Spectral Matching and Mixture Analysis Methods (분광정합 및 혼합 분석 방법을 활용한 위험·유해물질 스티렌 탐지)

  • Jae-Jin Park;Kyung-Ae Park;Tae-Sung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.1-10
    • /
    • 2022
  • As the volume of marine hazardous and noxious substances (HNSs) transported in domestic and overseas seas increases, the risk of HNS spill accidents is gradually increasing. HNS leaked into the sea causes destruction of marine ecosystems, pollution of the marine environment, and human casualties. Secondary accidents accompanied by fire and explosion are possible. Therefore, various types of HNSs must be rapidly detected, and a control strategy suitable for the characteristics of each substance must be established. In this study, the ground HNS spill experiment process and application result of detection algorithms were presented based on hyperspectral remote sensing. For this, styrene was spilled in an outdoor pool in Brest, France, and simultaneous observation was performed through a hyperspectral sensor. Pure styrene and seawater spectra were extracted by applying principal component analysis (PCA) and the N-Findr method. In addition, pixels in hyperspectral image were classified with styrene and seawater by applying spectral matching techniques such as spectral distance similarity (SDS), spectral correlation similarity (SCS), spectral similarity value (SSV), and spectral angle mapper (SAM). As a result, the SDS and SSV techniques showed good styrene detection results, and the total extent of styrene was estimated to be approximately 1.03 m2. The study is expected to play a major role in marine HNS monitoring.