• Title/Summary/Keyword: hypernetwork model

Search Result 13, Processing Time 0.016 seconds

Character-based Subtitle Generation by Learning of Multimodal Concept Hierarchy from Cartoon Videos (멀티모달 개념계층모델을 이용한 만화비디오 컨텐츠 학습을 통한 등장인물 기반 비디오 자막 생성)

  • Kim, Kyung-Min;Ha, Jung-Woo;Lee, Beom-Jin;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.451-458
    • /
    • 2015
  • Previous multimodal learning methods focus on problem-solving aspects, such as image and video search and tagging, rather than on knowledge acquisition via content modeling. In this paper, we propose the Multimodal Concept Hierarchy (MuCH), which is a content modeling method that uses a cartoon video dataset and a character-based subtitle generation method from the learned model. The MuCH model has a multimodal hypernetwork layer, in which the patterns of the words and image patches are represented, and a concept layer, in which each concept variable is represented by a probability distribution of the words and the image patches. The model can learn the characteristics of the characters as concepts from the video subtitles and scene images by using a Bayesian learning method and can also generate character-based subtitles from the learned model if text queries are provided. As an experiment, the MuCH model learned concepts from 'Pororo' cartoon videos with a total of 268 minutes in length and generated character-based subtitles. Finally, we compare the results with those of other multimodal learning models. The Experimental results indicate that given the same text query, our model generates more accurate and more character-specific subtitles than other models.

Exploring Cancer-Specific microRNA-mRNA Interactions by Evolutionary Layered Hypernetwork Models (진화연산 기반 계층적 하이퍼네트워크 모델에 의한 암 특이적 microRNA-mRNA 상호작용 탐색)

  • Kim, Soo-Jin;Ha, Jung-Woo;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.980-984
    • /
    • 2010
  • Exploring microRNA (miRNA) and mRNA regulatory interactions may give new insights into diverse biological phenomena. Recently, miRNAs have been discovered as important regulators that play a major role in various cellular processes. Therefore, it is essential to identify functional interactions between miRNAs and mRNAs for understanding the context- dependent activities of miRNAs in complex biological systems. While elucidating complex miRNA-mRNA interactions has been studied with experimental and computational approaches, it is still difficult to infer miRNA-mRNA regulatory modules. Here we present a novel method, termed layered hypernetworks (LHNs), for identifying functional miRNA-mRNA interactions from heterogeneous expression data. In experiments, we apply the LHN model to miRNA and mRNA expression profiles on multiple cancers. The proposed method identifies cancer-specific miRNA-mRNA interactions. We show the biological significance of the discovered miRNA- mRNA interactions.

Social Network Analysis of TV Drama via Location Knowledge-learned Deep Hypernetworks (장소 정보를 학습한 딥하이퍼넷 기반 TV드라마 소셜 네트워크 분석)

  • Nan, Chang-Jun;Kim, Kyung-Min;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.11
    • /
    • pp.619-624
    • /
    • 2016
  • Social-aware video displays not only the relationships between characters but also diverse information on topics such as economics, politics and culture as a story unfolds. Particularly, the speaking habits and behavioral patterns of people in different situations are very important for the analysis of social relationships. However, when dealing with this dynamic multi-modal data, it is difficult for a computer to analyze the drama data effectively. To solve this problem, previous studies employed the deep concept hierarchy (DCH) model to automatically construct and analyze social networks in a TV drama. Nevertheless, since location knowledge was not included, they can only analyze the social network as a whole in stories. In this research, we include location knowledge and analyze the social relations in different locations. We adopt data from approximately 4400 minutes of a TV drama Friends as our dataset. We process face recognition on the characters by using a convolutional- recursive neural networks model and utilize a bag of features model to classify scenes. Then, in different scenes, we establish the social network between the characters by using a deep concept hierarchy model and analyze the change in the social network while the stories unfold.