Exploring Cancer-Specific microRNA-mRNA Interactions by Evolutionary Layered Hypernetwork Models

진화연산 기반 계층적 하이퍼네트워크 모델에 의한 암 특이적 microRNA-mRNA 상호작용 탐색

  • Received : 2010.08.09
  • Accepted : 2010.08.25
  • Published : 2010.10.15

Abstract

Exploring microRNA (miRNA) and mRNA regulatory interactions may give new insights into diverse biological phenomena. Recently, miRNAs have been discovered as important regulators that play a major role in various cellular processes. Therefore, it is essential to identify functional interactions between miRNAs and mRNAs for understanding the context- dependent activities of miRNAs in complex biological systems. While elucidating complex miRNA-mRNA interactions has been studied with experimental and computational approaches, it is still difficult to infer miRNA-mRNA regulatory modules. Here we present a novel method, termed layered hypernetworks (LHNs), for identifying functional miRNA-mRNA interactions from heterogeneous expression data. In experiments, we apply the LHN model to miRNA and mRNA expression profiles on multiple cancers. The proposed method identifies cancer-specific miRNA-mRNA interactions. We show the biological significance of the discovered miRNA- mRNA interactions.

microRNA (miRNA)와 mRNA 조절 상호작용 탐색은 다양한 생물학적 현상에 있어 새로운 시야를 제공해 줄 수 있다. 최근 생물학적 프로세스에서 miRNA는 유전자 발현을 제어하고 세포를 기능적으로 조절하는 중요한 역할을 하는 요소로 밝혀졌다. 이에 복잡한 생물학 시스템에서 miRNA의 기능적 활동을 이해하기 위해서는 miRNA와 mRNA간 상호작용 분석은 필수적이다. 그러나 아직까지 복잡한 miRNA와 mRNA간 상호작용 관계를 추론하는 것은 어려운 문제이기 때문에 많은 연구자들이 실험적, 전산학적 접근 방법을 제안하며 활발한 연구를 진행하고 있다. 본 논문에서는 이종의 발현 데이터로부터 기능적으로 상호작용하는 miRNA-mRNA 조합을 탐색하기 위한 진화 연산 기반의 새로운 하이퍼네트워크 모델을 제안한다. 이에 실험결과로 제안하는 방법을 인간 암 관련 miRNA와 mRNA 발현 데이터에 적용하여 암 특이적 miRNA-mRNA 상호작용 집합을 탐색하고 발견한 miRNA-mRNA 상호작용 관계가 생물학적으로 유의함을 제시한다.

Keywords

References

  1. S. Yoon and G.D. Micheli, "Prediction of regulatory modules comprising microRNAs and target genes," Bioinformatics, 21, pp.ii93-ii100, 2005. https://doi.org/10.1093/bioinformatics/bti1116
  2. J.C. Huang et al., "Detecting microRNA targets by linking sequence microRNA and gene expression data," In Proceedings of RECOMB, pp.114-129, 2006.
  3. J.-G. Joung et al., "Discovery of microRNA-mRNA modules via population based probabilistic learning," Bioinformatics, vol.23, no.9, pp.1141-1147, 2007. https://doi.org/10.1093/bioinformatics/btm045
  4. S.-J. Kim et al., "Evolutionary layered hypernetworks for identifying microRNA-mRNA regulatory modules," IEEE World Congress Computational Intelligence (WCCI 2010), pp.2299-2306, 2010.
  5. J. Lu et al., "MicroRNA expression profiles classify human cancers," Nature, 435, 834-838, 2005. https://doi.org/10.1038/nature03702
  6. S. Ramaswamy et al., "Multiclass cancer diagnosis using tumor gene expression signature," PNAS, vol.98, no.26, pp.15149-15154, 2001. https://doi.org/10.1073/pnas.211566398
  7. B.-T. Zhang, "Hypernetworks: A molecular evolutionary architecture for cognitive learning and memory," IEEE Computational Intelligence Magazine, vol.3, no.3, pp.49-63, 2008.
  8. J.-W. Ha et al., "Evolutionary hypernetwork models for aptamer-based cardiovascular disease diagnosis," The Genetic and Evolutionary Computation Conference (GECCO 2007), pp.2709-2716, 2007.
  9. P.A. Futreal et al., "A census of human cancer genes," Nature Reviews Cancer, 4, pp.177-183, 2004. https://doi.org/10.1038/nrc1299
  10. S. Zhu et al., MicroRNA-21 targets tumor suppressor genes in invasion and metastasis, Cell Research, 18, pp.350-359, 2008. https://doi.org/10.1038/cr.2008.24
  11. M. Fabbri et al., "MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B," PNAS, vol.104, no.40, pp.15805-15810, 2007. https://doi.org/10.1073/pnas.0707628104
  12. G.A. Calin et al., "MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias," PNAS, vol.101, no.32, pp.11755-11760, 2004. https://doi.org/10.1073/pnas.0404432101
  13. M. Malzkorn et al., "Identification and functional characterization of microRNAs involved in the malignant progression of gliomas," Brain Pathology, 2009.
  14. T. Beissbarth and T.P. Speed, "GOstat: Find statistically overrepresented Gene Ontologies within a group of genes," Bioinformatics, vol.20, no.9, pp.1464-1465, 2004. https://doi.org/10.1093/bioinformatics/bth088
  15. S. Fujita et al., "miR-21 gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism," Journal of Molecular Biology, vol.378, no.3, pp.492-504, 2008. https://doi.org/10.1016/j.jmb.2008.03.015
  16. S. Zhu et al., "MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1)," Journal of Biological Chemistry, vol.282, no.19, pp.14328-14336, 2007. https://doi.org/10.1074/jbc.M611393200
  17. R.L. Elliott and G.C. Blobe, "Role of transforming growth factor beta in human cancer," Journal of Clinical Oncology, vol.23, no.9, pp.2078-2093, 2005. https://doi.org/10.1200/JCO.2005.02.047