• Title/Summary/Keyword: hyper-reality

Search Result 55, Processing Time 0.018 seconds

Study of system using load cell for real time weight sensing of artificial incubator (인공부화기의 실시간 중량감지를 위한 로드셀을 이용한 시스템 연구)

  • jeong, Jin-hyoung;Kim, Ae-kyung;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.144-149
    • /
    • 2018
  • The eggs are incubated for 18 days through the generator and incubated in the developing incubator. During the developmental period, the weight loss of the fetus is correlated with the ventricular formation, and the proper ventricular formation is also associated with the healthy embryonic hatching and the egg hatching rate. However, in the incubator period of the domestic hatchery, it is a reality to acquire the resultant side by the Iranian standard weight measurement with the experience of the hatchery and the person concerned and the development period without the apparatus for measuring the present weight. As a result, prevalence of early mortality, hunger and illness during hatching are frequent. Monitoring the reduction of weaning weight is crucial to obtaining chick quality and hatching performance with weight changes within the development machine. Water loss is different depending on the size of eggs, egg shell, and elder group. We can expect to increase the hatching rate by measuring the weight change in real time and optimizing the ventilation change accordingly. There is a need to develop a real-time measurement system that can control 10 to 13% reduction of the total weight during hatching. The system through this study is a way to check the one - time directly when moving the existing egg, and it is impossible to control the measurement of the fetal water evaporation within the development period. Unlike systems that do not affect the hatching rate, four load cells are connected in parallel on the Arduino sketch board and the AT-command command is used to connect the mobile phone and computer in real time. The communication speed of Bluetooth was set to 15200 to match the communication speed of Arduino and Hyper-terminal program. The real - time monitoring system was designed to visually check the change of the weight of the fetus in the artificial incubator. In this way, we aimed to improve the hatching rate and health condition of the hatching eggs.

Development of Video Work Manual for Rock-Drill Data In Fire Service (소방에서의 도상훈련 기초자료 영상화작업 매뉴얼 개발)

  • Cho, Jae-Kwan;Park, Hee-Jin;Hwang, Inn;Kwon, Hayrran
    • The Korean Journal of Emergency Medical Services
    • /
    • v.6 no.1
    • /
    • pp.103-128
    • /
    • 2002
  • As a result of trying the various manufacturing methods considering the reality of manpower and equipments with this manual, the following standardized procedures and contents can be suggested. (1) Since tools presenting Rock-Drill data must formalize the order of explanation although explainers are different, it will be valid that it is configured by existing power point method rather than by web document type. Composition of contents are selected on the basis of defence card and survey and then 8 items including initial screen, peripheral conditions, mobilization route, general conditions, use and structure by floor, department of vehicle consideration in activities and end screen are included. (2) Making methods and cautions of data included and used in power point are as follows ; - It was most effective that objects of fire fighting and location of neighboring fire fighting water were expressed by electronic map and drawing of inner building was made by scanning it after paining general architecture drawing(plan by each floor) rather than using drawing tools of EXCEL program or CAD drawing. And it was helpful to simplify contents of architecture drawing to wall, stairs and gate in understanding them. - Photographing of video data should be taken to show available fire fighting facilities in fire, use of planned space and the whole inner structure of each floor from the inside of fire fighting buildings and to display play time between 10 sec. and 1 min, for obstacles to distance from adjacent buildings or passage of special vehicles and fire fighting water from the outside of the building. - File format of video data taken in this way is most suitable to use wmv(window media video) or asf(advanced streaming format) type in consideration of time required for export, screen quality, file capacity and play type in Rock-Drill through network. - Still screen(photo) is more effective to express the department of fire fighting vehicles or other equipments than using video. (3) In configuration work of power point, hyper link was used most and configured to see any part at any situation like web document and then uniformity of presentation order of power point was complemented. (4) In case of sales facilities with the area of $35.557m^2$, the time of 22 hours and 30 minutes for five days was taken with five persons. Therefore, when eight-hour works a day were calculated, the whole process of video work for Rock-Drill can be finished with three day works.

  • PDF

From Broken Visions to Expanded Abstractions (망가진 시선으로부터 확장된 추상까지)

  • Hattler, Max
    • Cartoon and Animation Studies
    • /
    • s.49
    • /
    • pp.697-712
    • /
    • 2017
  • In recent years, film and animation for cinematic release have embraced stereoscopic vision and the three-dimensional depth it creates for the viewer. The maturation of consumer-level virtual reality (VR) technology simultaneously spurred a wave of media productions set within 3D space, ranging from computer games to pornographic videos, to Academy Award-nominated animated VR short film Pearl. All of these works rely on stereoscopic fusion through stereopsis, that is, the perception of depth produced by the brain from left and right images with the amount of binocular parallax that corresponds to our eyes. They aim to emulate normal human vision. Within more experimental practices however, a fully rendered 3D space might not always be desirable. In my own abstract animation work, I tend to favour 2D flatness and the relative obfuscation of spatial relations it affords, as this underlines the visual abstraction I am pursuing. Not being able to immediately understand what is in front and what is behind can strengthen the desired effects. In 2015, Jeffrey Shaw challenged me to create a stereoscopic work for Animamix Biennale 2015-16, which he co-curated. This prompted me to question how stereoscopy, rather than hyper-defining space within three dimensions, might itself be used to achieve a confusion of spatial perception. And in turn, how abstract and experimental moving image practices can benefit from stereoscopy to open up new visual and narrative opportunities, if used in ways that break with, or go beyond stereoscopic fusion. Noteworthy works which exemplify a range of non-traditional, expanded approaches to binocular vision will be discussed below, followed by a brief introduction of the stereoscopic animation loop III=III which I created for Animamix Biennale. The techniques employed in these works might serve as a toolkit for artists interested in exploring a more experimental, expanded engagement with stereoscopy.

Crystal structural property and chemical bonding nature of cellulose nanocrystal formed by high-pressure homogenizer (고압 균질기를 이용하여 형성된 셀룰로오스 나노결정의 결정 구조 및 화학적 결합 특성 연구)

  • Chel-Jong Choi;Nae-Man Park;Kyu-Hwan Shim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.79-85
    • /
    • 2024
  • We investigated the crystal structural property and chemical bonding nature of cellulose nanocrystal extracted directly from cotton cellulose using high-pressure homogenizer. The nanowire-like cellulose nanocrystals were randomly distributed in the form of a dense mesh. Based on calculating the interplanar distance of the Bragg-diffracted crystal plane observed through X-ray diffraction (XRD) analysis, it was found that the cellulose nanocrystals formed by high-pressure homogenizer had a monoclinc crystal structure, corresponding to the cellulose Iβ sub-polymorph. Solid-state nuclear magnetic resonance (NMR) analysis for the quantitatively evaluation of the amorphous region in cellulose nanocrystals revealed that the crystallinity index of cellulose nanocrystals was calculated to be 53.06 %. The O/C ratio of the surface of cellulose nanocrystal was estimated to be 0.82. Further analysis showed that chemical bonds of C-C bond or C-H bond, C-O bond, O-C-O bond or C=O bond, and O-C=O bond were the main chemical bonding states of the cellulose nanocrystal surface.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.