• Title/Summary/Keyword: hydrophobic film

Search Result 189, Processing Time 0.032 seconds

Preparation of O-I hybrid sols using alkoxysilane-functionalized amphiphilic polymer precursor and their application for hydrophobic coating (알콕시 실란기능화 양친성 고분자 전구체를 이용한 유-무기 하이브리드 졸 제조 및 이를 이용한 발수 코팅)

  • Lee, Dae-Gon;Kim, Nahae;Kim, Hyo Won;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.20 no.4
    • /
    • pp.146-154
    • /
    • 2019
  • In this study, alkoxysilane-functionalized amphiphilic polymer (AFAP), which have hydrophilic segment and hydrophobic segment functionalized by alkoxysilane group at the same backbone, was synthesized and used as a dispersant and control agent for reaction rate in the preparation of colloidally stable organic-inorganic (O-I) hybrid sols. After reaction with fluorosilane compounds, fluorinated O-I hybrid sols were prepared and coated onto glass substrate to form hydrophobic O-I hybrid coating films through low-temperature curing process. Surface hardness and hydrophobicity of cured coating films were varied with type of solvent and composition of AFAP and fluorinated alkoxysilane compounds. At appropriate solvent and composition of fluorinated alkoxysilane compounds, O-I hybrid coating film having high transparency and surface hardness could be prepared, which could be applicable to cover window of solar cell and displays.

Effect of Hydrophobic Coating on Silica for Adsorption and Desorption of Chemical Warfare Agent Simulants Under Humid Condition

  • Park, Eun Ji;Cho, Youn Kyoung;Kim, Dae Han;Jeong, Myung-Geun;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.148.2-148.2
    • /
    • 2013
  • We prepared hydrophobic PDMS-coated porous silica as pre-concentration adsorbent for chemical warfare agents (CWAs). Since CWAs can be harmful to human even with a small amount, detecting low-concentration CWAs has been attracting attention in defense development. Porous silica is one of the promising candidates for CWAs pre-concentration adsorbent since it is thermally stable and its surface area is sufficiently high. A drawback of silica is that adsorption of CWAs can be significantly reduced due to competitive adsorption with water molecule in air since silica is quite hydrophilic. In order to solve this problem, hydrophobic polydimethylsiloxane (PDMS) thin film was deposited on silica. Adsorption and desorption of chemical warfare agent (CWA) simulants (Dimethylmethylphosphonate, DMMP and Dipropylene Glycol Methyl Ether, DPGEM) on bare and PDMS-coated silica were studied using temperature programed desorption (TPD) with and without co-exposing of water vapor. Without exposure of water vapor, desorbed amount of DMMP from PDMS-coated silica was twice larger than that from bare silica. When the samples were exposed to DMMP and water vapor at the same time, no DMMP was desorbed from bare silica due to competitive adsorption with water. On the other hand, desorbed DMMP was detected from PDMS-coated silica with reduced amount compared to that from the sample without water vapor exposure. Adsorption and desorption of DPGME with and without water vapor exposing was also investigated. In case of bare silica, all the adsorbed DPGME was decomposed during the heating process whereas molecular DPGME was observed on PDMS-coated silica. In summary, we showed that hydrophobic PDMS-coating can enhance the adsorption selectivity toward DMMP under humid condition and PDMS-coating also can have positive effect on molecular desorption of DPGME. Therefore we propose PDMS-coated silica could be an adequate adsorbent for CWAs pre-concentration under practical condition.

  • PDF

Influence of Electrolyte on the Shape and Characteristics of TiO2 during Anodic Oxidation of Titanium (Titanium 양극산화시 TiO2 의 형상 및 특성에 미치는 전해질의 영향)

  • Yeji Choi;Chanyoung Jeong
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.193-200
    • /
    • 2023
  • Titanium alloy (grade-4) is commonly used in industrial and medical applications. To improve its corrosion resistance and biocompatibility for medical use, it is necessary to form a titanium oxide film. In this study, the morphology of the oxide film formed by anodizing Ti-grade 4 using different electrolytes was analyzed. Wetting properties before and after surface modification with SAM coating were also observed. Electrolytes used were categorized as A, B, and C. Electrolyte A consisted of 0.3 M oxalic acid and ethylene glycol. Electrolyte B consisted of 0.1 M NH4F and 0.1 M H2O in ethylene glycol. Electrolyte C consisted of 0.07 M NH4F and 1 M H2O in ethylene glycol. Samples B and C exhibited a porous structure, while sample A formed a thickest oxide film with a droplet-like structure. AFM analysis and contact angle measurements showed that sample A with the highest roughness exhibited the best hydrophilicity. After surface modification with SAM coating, it displayed superior hydrophobicity. Despite having the thickest oxide film, sample A showed the lowest insulation resistance due to its irregular structure. On the other hand, sample C with a thick and regular porous oxide film demonstrated the highest insulation resistance.

Fabrication of patterned substrate by wet process for biochip (습식 공정법에 의한 바이오칩 용 패터닝 기판 제조)

  • Kim, Jin-Ho;Lee, Min;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Sae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.6
    • /
    • pp.288-292
    • /
    • 2009
  • Hydrophobic/hydrophilic patterned substrates were fabricated on a glass substrate by a liquid phase deposition (LPD) method. Hydrophobic surface was obtained by modifying ZnO thin films with a rough surface using a fluoroalkyltrimethoxysilane (FAS) and hydrophilic surface was prepared by decomposing FAS on an exposed to UV light. The hexagonal ZnO rods were perpendicularly grown by LPD method on glass substrates with a ZnO seed layer. The diameter and thickness of hexagonal ZnO rods were increased as a function of increases of immersion time. The surface morphology, thickness, crystal structure, transmittance and contact angle of prepared ZnO thin films were measured by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectrophotometer (UV-vis) and contact angle measurement. Hydrophilic ZnO thin films with a contact angle of $20^{\circ}{\sim}30^{\circ}$ were changed to a hydrophobic surface with a contact angle of $145^{\circ}{\sim}161^{\circ}$ by a FAS surface treatment. Prepared hydrophobic surface was pattered by an irradiation of UV light using shadow mask with $300\;{\mu}m$ or 3 mm dot size. Finally, the hydrophobic surface exposed to UV light was changed to a hydrophilic surface.

Removal of Static Electricity on Polyimide Film Surface by $O_2$ or Ar Cold Plasma Etching

  • Lee, Jae-Ho;Jeong, Hee-Cheon
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.151-155
    • /
    • 2004
  • Cold plasma of $O_2$ or Ar was irradiated on hydrophobic Kapton surface to attenuate or remove the electrostatic potential. A measurement on charge dissipation speed clarifies the obscure effect of plasma. These consequences reveal that $O_2$ plasma etching is more effective than Ar plasma. After 30 days, the dissipation speed of accumulated charge on initially etched sample has not changed under summer season.

Study on the Characteristic due to the Various Polarity based on the Carbon Contents in Organic Thin Film (유기물 박막에서 탄소 함량에 따라서 달라지는 분극의 변화에 따른 특성 변화에 대한 연구)

  • Oh, Teresa
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2065-2070
    • /
    • 2010
  • The diluted PMMA treated $SiO_2$ films as an passivation materials for semiconductor devices was researched by using the FTIR spectra. The diluted PMMA solution with various ratios changed the surface of $SiO_2$ film as the hydrophilic, hydrophobic or hybrid type properties. The sample 7 with little carbon content showed dramatically the chemical variation by the FTIR spectra analysis. Beacuse the little carbon with electrons decreased the polarity and surface energy on the $SiO_2$ film, and then became a stable bonding structure and decreased the leakage current. The FTIR spectra can define the detail variation due to the chemical reaction on the organic thin film, and help to research the characteristic of the organic materials.

A Multifunctional Surface Fabricated by Polydimethylsiloxane Coated Multi-walled Carbon Nanotubes

  • Yoon, Hye Soo;Kim, Kwang-Dae;Jeong, Myung-Geun;Kim, Dae Han;Park, Eun Ji;Jeong, Bora;Cho, Youn Kyoung;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.167.1-167.1
    • /
    • 2014
  • We report a facile method to fabricate superhydrophobic, transparent and conductive film using multi-walled carbon nanotubes (MWCNTs) which are coated by polydimethylsiloxane (PDMS). In order to prepare a film, PDMS coated MWCNTs were dispersed in solvents and the solution was drop-casted on substrates. It was demonstrated that the PDMS coating enhanced the dispersion of MWCNTs in diverse solvents such as dimethyl formamide(DMF) and acetone without the use of acids or surfactants, which are the common methods. In the case of DMF solvent, dispersion of MWCNT was improved by 40 % upon PDMS-coating of MWCNT. Enhanced dispersion of MWCNTs made it possible to fabricate transparent and conductive film homogeneously on the substrate and PDMS-coating on MWCNTs also made the surface hydrophobic. We can fabricate a uniform and multifunctional MWCNT film (transparent, conductive, superhydrophobic and flexible) which is applicable on large area without any physical damage and expensive equipment.

  • PDF

Synthesis and Characterization of Mn3O4-Graphene Nanocomposite thin Film by an ex situ Approach

  • Kang, Myunggoo;Kim, Jung Hun;Yang, Woochul;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1067-1072
    • /
    • 2014
  • In this study, we report a new approach for $Mn_3O_4$-graphene nanocomposite by ex situ method. This nanocomposite shows two-dimensional aggregation of nanoparticle, and doping effect by decorated manganese oxide ($Mn_3O_4$), as well. The graphene film was made through micromechanical cleavage of graphite on the $SiO_2/Si$ wafer. Manganese oxide ($Mn_3O_4$) nanoparticle with uniform cubic shape and size (about $5.47{\pm}0.61$ nm sized) was synthesized through the thermal decomposition of manganese(II) acetate, in the presence of oleic acid and oleylamine. The nanocomposite was obtained by self-assembly of nanoparticles on graphene film, using hydrophobic interaction. After heat treatment, the decorated nanoparticles have island structure, with one-layer thickness by two-dimensional aggregations of particles, to minimize the surface potential of each particle. The doping effect of $Mn_3O_4$ nanoparticle was investigated with Raman spectra. Given the upshift in positions of G and 2D in raman peaks, we suggest that $Mn_3O_4$ nanoparticles induce p-doping of graphene film.

Polymerized Organic Thin Films and Comparison on their Physical and Electrochemical Properties

  • Cho, S.H.;You, Y.J.;Kim, J.G.;Boo, J.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.9-13
    • /
    • 2003
  • Plasma polymerized organic thin films were deposited on Si(100), glass and metal substrates at $25∼100 ^{\circ}C$ using thiophene and toluene precursors by PECVD method. In order to compare physical and electrochemical properties of the as-grown thin films, the effects of the RF plasma power in the range of 30∼100 W and deposition temperature on both corrosion protection efficiency and physical properties were studied. We found that the corrosion protection efficiency ($P_{k}$), which is one of the important factors for corrosion protection in the interlayer dielectrics of microelectronic devices application, was increased with increasing RF power. The highest $P_{k}$ value of plasma polymerized toluene film (85.27% at 70 W) was higher than that of the plasma polymerized thiophene film (65.17% at 100 W), indicating inhibition of oxygen reduction. The densely packed and tightly interconnected toluene film could act as an efficient barrier layer to the diffusion of molecular oxygen. The result of contact angle measurement showed that the plasma polymerized toluene films have more hydrophobic surface than those of the plasma polymerized thiophene films.

Chemical Fixation of Polyelectrolyte Multilayers on Polymer Substrates

  • Tuong, Son Duy;Lee, Hee-Kyung;Kim, Hong-Doo
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.373-378
    • /
    • 2008
  • A simple chemical fixation method for the fabrication of layer-by-layer (LbL) polyelectrolyte multilayer (PEM) has been developed to create a large area, highly uniform film for various applications. PEM of weak poly-electrolytes, i.e., polyallylamine hydrogen chloride (PAH) and poly(acrylic acid)(PAA), was assembled on polymer substrates such as poly(methyl methacrylate)(PMMA) and polycarbonate (PC). In the case of a weak polyelectrolyte, the fabricated thin film thickness of the polyelectrolyte multilayers was strongly dependent on the pH of the processing solution, which enabled the film thickness or optical properties to be controlled. On the other hand, the environmental stability for device application was poor. In this study, we utilized the chemical fixation method using glutaraldehyde (GA)-amine reaction in order to stabilize the polyelectrolyte multilayers. By simple treatment of GA on the PEM film, the inherent morphology was fixed and the adhesion and mechanical strength were improved. Both surface tension and FT-IR measurements supported the chemical cross-linking reaction. The surface property of the polyelectrolyte films was altered and converted from hydrophilic to hydrophobic by chemical modification. The possible application to antireflection coating on PMMA and PC was demonstrated.