• Title/Summary/Keyword: hydrophobic acid

Search Result 423, Processing Time 0.036 seconds

Effects of the Rheological Properties of UV Cured Acrylic Pressure Sensitive Adhesive with Nano-particles on the Silk Screen Printing and Adhesion (실크 스크린 인쇄 및 점착력에 나노 입자가 포함된 UV 경화형 아크릴계 감압 점착제의 유변학적 특성)

  • Cho, Min-Jeong;Kang, Ho-Jong;Kim, Dong-Bok
    • Journal of Adhesion and Interface
    • /
    • v.18 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • For application to display module junction process, the silk screen printing based on UV curable acrylic pressure sensitive adhesive(PSA) with silica nano-particles and the rheological properties were studied to investigate the effect on printability and adhesion. The monomers for PSA were based on 2-ethylhexyl acrylate(2-EHA) and acrylic acid(AA) 93:7, butyl acylate(BA), 2-hydroxyethyl acrylate(2-HEA) and tetrahydrofurfuryl acrylate(THFA) were added. Additionally, hydrophobic and hydrophilic nano-particles AEROSIL R974 and AEROSIL 200 were added, respectively. When the ratio of nano-particle was used above 4 or 7 phr, G' and ${\eta}^*$ were increased significantly. When the ratio of AEROSIL 200 was used above 7 phr, the penetration property was decreased during the silk screen printing. We found that the adhesion was decreased with increasing the nano-particle content, and it was decreased in the case of the hydrophilic nano-particle AEROSIL 200.

Recovery of Lipids from Chlorella sp. KR-1 via Pyrolysis and Characteristics of the Pyrolysis Oil (Chlorella sp. KR-1 열분해에 의한 지질 회수 및 열분해 오일 특성 분석)

  • Lee, Ho Se;Jeon, Sang Goo;Oh, You-Kwan;Kim, Kwang Ho;Chung, Soo Hyun;Na, Jeong-Geol;Yeo, Sang-Do
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.672-677
    • /
    • 2012
  • Lipids in microalgal biomass were recovered by using pyrolysis method. The pyrolysis experiments of two Chlorella sp. KR-1 samples, which have triglyceride contents of 10.8% and 36.5%, respectively were carried out at $600^{\circ}C$ to investigate the effects of lipid contents in the cells on the reaction characteristics. The conversion and liquid yield of the lipid-rich sample were higher than those of the lipid-lean sample since its carbon to hydrogen ratio was low. There were low molecular weight organic acids, ketones, aldehydes and alcohols in the liquid products from both KR-1 samples, but the pyrolysis oil of the lipid-rich sample was abundant in free fatty acids, particularly palmitic acid, oleic acid and stearic acid while the content of nitrogen containing organic compounds was low. The microalgal pyrolysis oil had two layers composed of the light hydrophobic fraction and the heavy hydrophilic fraction. The light fraction might be originated from triglycerides and the heavy fraction might be from carbohydrates and proteins. In the light fraction of the liquid products, there were considerable linear alkanes such as pentadecane and heptadecane as well as free fatty acids, implying that deoxygenation reaction including decarboxylation was occurred during the pyrolysis. The yield of the liquid products from the pyrolysis of the KR-1 sample having triglyceride content of 36.5% was 56.9% and the light fraction in the liquid products was 68.2%. Also more than 80% of the light fraction was free fatty acids and pure hydrocarbons, thus showing that most triglycerides could be extracted in the form of suitable raw materials for biofuels.

A Frameshift Mutation causes Dentinogenesis Imperfecta Type II (상아질 형성부전증 제 II 형의 원인이 되는 Frameshift 돌연변이)

  • Hong, Jiwon;Shin, Teo Jeon;Hyun, Hong-Keun;Kim, Young-Jae;Lee, Sang-Hoon;Kim, Jung-Wook
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.2
    • /
    • pp.164-169
    • /
    • 2017
  • Dentinogenesis imperfecta type II (DGI-II) is an inherited disorder affecting the dentin matrix and is related to mutations in the dentin sialophosphoprotein (DSPP) gene. The protein encoded by the DSPP gene undergoes extensive posttranslational modifications. Dentin phosphoprotein (DPP), one of the DSPP expressed products, has unique composition with highly repetitive Asp-Ser-Ser amino acid residues and is related to the maturation of dentin mineralization. We aimed to identify mutation in DSPP, including the DPP coding region, contributing to inherited dentin defects in a Korean family with DGI-II. Clinical and radiographic examinations were performed, and all five exons and exon-intron boundaries of the DSPP gene were sequenced. Additionally, allele-specific cloning for highly repetitive DPP region was performed. By sequencing and cloning, a heterozygous single nucleotide deletion (c.2688delT) was identified. The identified mutation caused a frameshift in the DPP coding region. This frameshift mutation would introduce hydrophobic amino acids instead of hydrophilic amino acids and would result in a change in the characteristics of DPP.

Synthesis and Characterization of Chelating Resins Containing Thiol Croups (티올기를 함유하는 킬레이트 수지의 합성 및 특성)

  • 박인환;방영길;김경만;주혁종
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.330-339
    • /
    • 2003
  • Three kinds of macro-reticular bead-typed chelating resins having thiol groups were obtained from basic resins like poly(strene-co-divinylbenzene) (PSD) and poly(styrene-co-methyl methacrylate-co-divinylbenzene) (PSMD): the chelating resin (I) was prepared by chloromethylation of phenyl rings of PSD followed by thiolation using thiourea. The chelating resin (ll) was designed to provide enough space to chelate heavy metal ions; one chloromethyl group was obtained by chlorination of hydroxymethyl group provided by reduction of carboxylic ester group of PSMD and another chloromethyl group was obtained by direct chloromethylation of pendent phenyl group using chloromethyl methyl ether. Both of chloromethyl groups were thiolated by using thiourea. The chelating resin (III) was prepared by chlorosulfonation of phenyl rings of PSD followed by thiolation using sodium hydrosulfide. The adsorbtivity toward heavy metal ions was evaluated. The hydrophobic chelating resin (I) with thiol groups showed highly selective adsorption capacity f3r mercury ions. However, the chelating resin (II) with thiol groups showed mere effective adsorption capacity toward mercury ions than chelating resin (I) with thiol groups, and showed some adsorption capacity for other heavy metal ions like Cu$\^$2+/, Pb$\^$2+/, Cd$\^$2+/ and Cr$\^$3+/. On the other hand, the chelating resin (III) which have hydrophilic thiosulfonic acid groups was found to be effective adsorbents for some heavy metal ions such as Hg$\^$2+/, Cu$\^$2+/, Ni$\^$2+/, Co$\^$2+/, Cr$\^$3+/ and especially Cd$\^$2+/ and Pb$\^$2+/.

Influence of Solution pH on Pyrene Binding to Sorption-Fractionated and Kaolinite-Bound Humic Substance

  • Hur Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.61-69
    • /
    • 2005
  • Changes in pyrene binding by dissolved and kaolinite-associated humic substances (HS) due to HS adsorptive fractionation processes were examined using purified Aldrich humic acid (PAHA) at different pH (4, 7 and 9). Irrespective of solution pH, molecular weight (MW) fractionation occurred upon adsorption of PAHA onto kaolinite, resulting in the deviation of residual PAHA MW from the original MW prior to sorption. Variation in $K_{OC}$ by bulk PAHA was observed at different pH due to relative contributions of partitioning and size exclusion effects (i.e., specific interactions). For all pH conditions investigated, carbon-normalized pyrene binding coefficients for nonadsorbed, residual fractions $(K_{OC}(res))$ were different from the original dissolved PAHA $K_{OC}$ value $(K_{OC}(orig))$ prior to contact with the kaolinite suspensions. Positive correlations between pyrene $(K_{OC}(res))$ and weight-average molecular weight $(MW_W)$ for residual PAHA fractions were observed for pH 7 and 9. However, such a positive correlation was not found at pH 4 due to the absence of the dramatic fractionation observed for high pH conditions (i.e., exclusive fractionation with respect to higher MW), suggesting that actual MW distribution pattern is more important for sorption-fractionated HS than the composite MW value. For adsorbed PAHA, conformational changes of PAHA upon adsorption seem to be important for the extent of pyrene binding. At relatively high pH (7 and 9), lower extent of pyrene binding was observed for adsorbed PAHA versus nonadsorbed PAHA. The conformation effects were more pronounced at higher pH.

Probiotic Properties of Lactobacillus strains Isolated from Kimchi (김치로부터 분리된 Lactobacillus strains의 probiotic 특성)

  • Choi, Hye Jung;Lim, Bo Ram;Kim, Dong Wan;Kwon, Gi-Seok;Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1231-1237
    • /
    • 2014
  • The objective of this study was to evaluate the safety and functional properties of four potential probiotic strains isolated from Kimchi, traditional Korean fermented vegetables. Based on being higher tolerance to bile salts and showing higher acid resistance or hydrophobic properties, one Lactobacillus arizonensis strain (BCNU 9032) and three L. brevis strains (BCNU 9037, BCNU 9098 and BCNU 9101) were selected in the screening experiment. All strains can survived up to 99% after 3h culture in pH 2.5 and resistant to 1% bile salts. These strains also showed good antimicrobial activities against a number of food borne pathogens, especially against Escherichia coli and Shigella sonnei. The ability to lower cholesterol levels of L. arizonensis BCNU 9032 and L. brevis 9037 were demonstrated by bile salt hydrolytic activity and cholesterol assimilation tests. Moreover, L. brevis BCNU 9098 and BCNU 9101 showed higher adherence to Caco-2 cells (12.76 and 11.86%, respectively) than Lactobacillus rhamnosus GG, a commercial probiotic strain used worldwide. The results suggest that these strains could be used as probiotics.

Characterization, Cloning and Expression of the Ferritin Gene from the Korean Polychaete, Periserrula leucophryna

  • Jeong Byeong Ryong;Chung Su-Mi;Baek Nam Joo;Koo Kwang Bon;Baik Hyung Suk;Joo Han-Seung;Chang Chung-Soon;Choi Jang Won
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.54-63
    • /
    • 2006
  • Ferritin is a major eukaryotic protein and in humans is the protein of iron storage. A partial gene fragment of ferritin (255 bp) taken from the total RNA of Periserrula leucophryna, was amplified by RT-PCR using oligonucleotide primers designed from the conserved metal binding domain of eukaryotic ferritin and confirmed by DNA sequencing. Using the $^{32}P-labeled$ partial ferritin cDNA fragment, 28 different clones were obtained by the screening of the P. leucophryna cDNA library prepared in the Uni-ZAP XR vector, sequenced and characterized. The longest clone was named the PLF (Periserrula leucophryna ferritin) gene and the nucleotide and amino acid sequences of this novel gene were deposited in the GenBank databases with accession numbers DQ207752 and ABA55730, respectively. The entire cDNA of PLF clone was 1109 bp (CDS: 129-653), including a coding nucleotide sequence of 525 bp, a 5' -untranslated region of 128 bp, and a 3'-noncoding region of 456 bp. The 5'-UTR contains a putative iron responsive element (IRE) sequence. Ferritin has an open reading frame encoding a polypeptide of 174 amino acids including a hydrophobic signal peptide of 17 amino acids. The predicted molecular weights of the immature and mature ferritin were calculated to be 20.3 kDa and 18.2 kDa, respectively. The region encoding the mature ferritin was subcloned into the pT7-7 expression vector after PCR amplification using the designed primers and included the initiation and termination codons; the recombinant clones were expressed in E. coli BL21(DE3) or E. coli BL21(DE3)pLysE. SDS-PAGE and western blot analysis showed that a ferritin of approximately 18 kDa (mature form) was produced and that by iron staining in native PAGE, it is likely that the recombinant ferritin is correctly folded and assembled into a homopolymer composed of a single subunit.

Bitter Peptides Derived from ${\alpha}_{s1}-and\;{\beta}-Casein$ Digested with Alkaline Protease from Bacillus subtilis (Bacillus subtilis의 염기성 프로테아제로 분해된 ${\alpha}_{s1}$- 및 ${\beta}$-카세인에서 분리된 쓴 맛 펩타이드)

  • Sohn, Kyung-Hyun;Lee, Hyong-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.659-665
    • /
    • 1988
  • The ${\alpha}_{s1}$-and ${\beta}$-casein were purified by DEAE-cellulose chromatography and digested with alkaline protease from Bacillus subtilis. Bitter fractions from the hydrolyzates were isolated using n-butanol extraction, Sephadex G-25 gel chromatography, and high performance liquid chromatography. Peptide mixtures were separated by reverse-phase octadecyl silica column with linear gradient of 0-80% acetonitrile containing 0.1% trifluoroacetic acid. Major peaks were combined from replicate chromatographies and the bitterness of each peak was evaluated. The bitter-tasting peaks were rechromatograpied until isolated peaks were obtained. Three different bitter peptides(BP-I, BP-II, BP-III) were obtained from the ${\alpha}_{s1}$-casein hydrolyzate. BP-I was eluted at 34% acetonitrile and BP-II, 35%, BP-III, 26%, respectively. Two bitter peptides(BP-IV, BP-V) were isolated from the ${\beta}-casein$ hydrolyzate: BP-IV was eluted at 40% acetonitrile and BP-V, 42%. BP-V was the most hydrophobic peptide in the five bitter peptides. However, BP-I and BP-II tasted more bitter than BP-IV and BP-V.

  • PDF

Rejection rate and mechanisms of drugs in drinking water by nanofiltration technology

  • Ge, Sijie;Feng, Li;Zhang, Liqiu;Xu, Qiang;Yang, Yifei;Wang, Ziyuan;Kim, Ki-Hyun
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.329-338
    • /
    • 2017
  • Nanofiltration (NF) technology is a membrane-based separation process, which has been pervasively used as the high-effective technology for drinking water treatment. In this study, a kind of composite polyamide NF thin film is selected to investigate the removal efficiencies and mechanisms of 14 trace drugs, which are commonly and frequently detected in the drinking water. The results show that the removal efficiencies of most drugs are quite high, indicating the NF is an effective technology to improve the quality of drinking water. The removal efficiencies of carbamazepine, acetaminophen, estradiol, antipyrine and isopropyl-antipyrine in ultrapure water are $78.8{\pm}0.8%$, $16.4{\pm}0.5%$, $65.4{\pm}1.8%$, $71.1{\pm}1.5%$ and $89.8{\pm}0.38%$, respectively. Their rejection rates increase with the increasing of their three-dimensional sizes, which indicates that the steric exclusion plays a significant role in removal of these five drugs. The adsorption of estradiol with the strongest hydrophobicity has been studied, which indicates that adsorption is not negligible in terms of removing this kind of hydrophobic neutral drugs by NF technology. The removal efficiencies of indomethacin, diclofenac, naproxen, ketoprofen, ibuprofen, clofibric acid, sulfamethoxazole, amoxicillin and bezafibrate in ultrapure water are $81{\pm}0.3%$, $86.3{\pm}0.5%$, $85.7{\pm}0.4%$, $93.3{\pm}0.3%$, $86.6{\pm}2.5%$, $90.6{\pm}0.4%$, $59.7{\pm}1.7%$, $80.3{\pm}1.4%$ and $80{\pm}0.5%$, respectively. For these nine drugs, their rejection rates are better than the above five drugs because they are negatively charged in ultrapure water. Meanwhile, the membrane surface presents the negative charge. Therefore, both electrostatic repulsion and steric exclusion are indispensable in removing these negatively charged drugs. This study provides helpful and scientific support of a highly effective water treatment method for removing drugs pollutants from drinking water.

Decreasing Effect of Lidocaine.HCl on the Thickness of the Neuronal and Model Membrane

  • Park, Sung-Min;Park, Jong-Sun;Kim, Jae-Han;Baek, Jin-Hyun;Yoon, Tae-Gyun;Lee, Do-Keun;Ryu, Won-Hyang;Chung, In-Kyo;Sohn, Uy Dong;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.253-257
    • /
    • 2013
  • This study examined the mechanism of action of a local anesthetic, lidocaine HCl. Energy transfer between the surface fluorescent probe, 1-anilinonaphthalene-8-sulfonic acid, and the hydrophobic fluorescent probe, 1,3-di(1-pyrenyl) propane, was used to determine the effect of lidocaine HCl on the thickness (D) of the synaptosomal plasma membrane vesicles (SPMV) isolated from the bovine cerebral cortex, and liposomes of the total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from the SPMV. The thickness (D) of the intact SPMV, SPMVTL and SPMVPL were $1.044{\pm}0.008$, $0.914{\pm}0.005$ and $0.890{\pm}0.003$ (arbitrary units, n=5) at $37^{\circ}C$ (pH 7.4), respectively. Lidocaine HCl decreased the thickness of the neuronal and model membrane lipid bilayers in a dose-dependent manner with a significant decrease in the thickness, even at 0.1 mM. The decreasing effect of lidocaine HCl on the membrane thickness might be responsible for some, but not all of its anesthetic action.