• Title/Summary/Keyword: hydrophobic acid

Search Result 423, Processing Time 0.033 seconds

Study on Characterization of Hydrophilic and Hydrophobic Fractions of Water-soluble Organic Carbon with a XAD Resin (XAD 수지에 의한 친수성 및 소수성 수용성 유기탄소의 특성조사)

  • Jeong, Jae-Uk;Kim, Ja-Hyun;Park, Seung-Shik;Moon, Kwang-Joo;Lee, Seok-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.337-346
    • /
    • 2011
  • 24-hr integrated measurements of water-soluble organic carbon (WSOC) in PM2.5 were made between May 5 and September 25, 2010, on a six-day interval basis, at the Metropolitan Area Air Pollution Monitoring Supersite. A macro-porous XAD7HP resin was used to separate hydrophilic and hydrophobic WSOC. Compounds that penetrate the XAD7HP column are referred to hydrophilic WSOC, while those retained by the column are defined as hydrophobic WSOC. Laboratory calibrations using organic standards suggest that hydrophilic WSOC includes lowmolecular aliphatic dicarboxylic acids and carbonyls with less than 4 or 5 carbons, amines, and saccharides. While the hydrophobic WSOC is composed of compounds of aliphatic dicarboxylic acids with carbon numbers larger than 4~5, phenols, aromatic acids, cyclic acid, and humic-like Suwannee River fulvic acid. Over the entire study period, total WSOC accounted for on average 48% of OC, ranging from 32 to 65%, and hydrophilic WSOC accounted for on average 30.5% (9.3~66.7%) of the total WSOC. Based on the previous results, our measurement result suggests that significant amounts of hydrophobic WSOC during the study period were probably from primary combustion sources. However, on June 9 when 1-hr highest ozone concentration of 130 ppb was observed, WSOC to OC was 0.61, driven by increases in the hydrophilic WSOC. This result also suggests that processes, such as secondary organic aerosol formation, produce significant levels of hydrophilic WSOC compounds that add substantially to the fine particle fraction of the organic aerosol.

Synthesis of Decapeptide of L-Aspartic Acid and Benzyl-L-Aspartic Acid by Solid Phase Peptide Synthesis

  • Yoo, Bong-K.;Jalil Miah, M.A.;Lee, Eung-Seok;Han, Kun
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.756-760
    • /
    • 2005
  • Polyene macrolide amphotericin B (AmB) is the drug of choice for the treatment of disseminated fungal infections. However, because of its pronounced side effects, the drug has limited applicability. There are few interesting reports, which state that co-administration of the drug with homo-peptide of polyaspartic acid reduces the side effects of the drug. In our present study, an approach has been made to systematically synthesize low molecular weight heteropeptides consisting of L-aspartic acid and its derivative. It was hypothesized that such heteropeptides will reduce the toxic side effects of the drug by facile hydrophobic binding between the polymer and the drug. We have employed the strategy of solid phase peptide synthesis (SPPS) to synthesize low molecular weight hetero-peptides by using L-aspartic acid and benzyl-L-aspartic acid to induce the hydrophobic binding between the peptide and the drug. In future, the proposed methodology can be employed to tailor other polypeptides substituted with benzyl groups to reduce the nephrotoxicity of AmB.

Expression of Lymphocyte ADP-ribosyltransferase in Rat Mammary Adenocarcinoma Cells (임파구 ADP-ribosyltransferase의 rat mammary adenocarcinoma cell에서의 발현)

  • 김현주
    • Journal of Life Science
    • /
    • v.8 no.1
    • /
    • pp.102-108
    • /
    • 1998
  • The nascent from of glycosylphosphatidylinositol (GPI)-anchored proteins possesses both amino and carboxy terminal hydrophobic signal sequences to direct processing in the endoplasmic reticulum (ER). Following cleavage of the amino-terminal signal peptide, the carboxy-terminal peptide is processed. Previously, mouse lymphocyte NDA: agrinine ADP-ribosyltransferase (Yac-1) was cloned and the deduced amino acid sequence of the Yac-1 transferase contained hydrophobic amino and carboxy termini, consistent with known signal sequences of GPI-anchored proteins. This tranferase was present on the surface of NMU (rat mammary adenocarcinoma) cells transfected with the wildtype cDNA and was released with phosphatidylinositol-specific phosphilpase C. Expression of the mutant protein, lacking the carboxy terminal hydrophobic sequence, resulted in the peoduction of soluble, secreted from of the transferase. This result shows that carboxy terminal sequence is important for GPI-attachment.

  • PDF

Prediction of Lytic Segments from Bacillus thuringiensis var israelensis 130 kDa and 72 kDa Proteins

  • Suvarchala Devi, V.;Jamil, Kaiser
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.130-133
    • /
    • 2001
  • The amino acid sequences of 130 kDa and 72 kDa proteins responsible for the larvicidal activity of Bacillus thuringiensis var israelensis (Bti) were analyzed by hydrophobic moment plots. A search for highly amphiphilic $\alpha$-helices was made in these proteins using the helical hydrophobic moment as a criterion of amphiphilicity The protein segments of the largest hydrophobic moments were analyzed. In the present communication we report the surface seeking helices in 130 kDa and 72 kDa proteins of Bacillus thuringiensis var israelensis. It is assumed that the surface seeking segments may participate in one of the membrane-related functions of Bacillus thuringiensis.

  • PDF

A Statistical Thermodynamic Study on the Conformational Transition of Oligopeptide Multimer

  • Kim, Yong Gu;Park, Hyeong Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.131-138
    • /
    • 1996
  • The conformational transition of oligopeptide multimer,-(HPPHPPP)n-, is studied (H:hydrophobic amino acid, P:hydrophilic amino acid). The helix/coil transitions are detected in the multimer. The transition depends on the number of amino acid in the sequence, the concentration of the oligopeptide, and temperature which affects helix stability constant (${\xi}$) and hydrophobic interaction parameter (wj). In the thermodynamic equilibrium system jA${\rightarrow}$Aj (where A stands for oligopeptide monomer), Skolnick et al., explained helix/coil transition of dimer by the matrix method using Zimm-Bragg parameters ${\xi}$ and $\sigma$ (helix initiation constant). But the matrix method do not fully explain dangling H-bond effects which are important in oligopeptide systems. In this study we propose a general theory of conformational transitions of oligopeptides in which dimer, trimer, or higher multimer coexists. The partition of trimer is derived by using zipper model which account for dangling H-bond effects. The transitions of multimers which have cross-linked S-S bonds or long chains do not occur, because they keep always helical structures. The transitions due to the concentration of the oligopeptides are steeper than those due to the chain length or temperature.

Chiral Recognition Models of Enantiomeric Separation on Cyclodextrin Chiral Staionary Phases

  • 이선행;김병학;이영철
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.4
    • /
    • pp.305-309
    • /
    • 1995
  • The enantiomeric separation of several amino acid derivatives by reversed-phase liquid chromatography using two (R)-and (S)-naphthylethylcarbamate-β-cyclodextrin(NEC-β-CD) bonded stationary phases was studied to illustrate the chiral recognition model of the enantiomeric separation. The retention and enantioselectivity of the chiral separations with (R)-and (S)-NEC-β-CD bonded phases were compared with similar separations with the native β-CD stationary phases. Especially, the enantioselectivity and elution orders between the derivatized amino acid enantiomers are carefully examined. These results can be illustrated by the chiral recognition models involving inclusion complexation, π-π interaction, and/or hydrophobic interaction. Inclusion complexation and hydrophobic interaction of the naphthyl group of the NEC moiety seem to be major chiral recognition components in the enantiomeric separation of 2,4-dinitrophenyl amino acids and dabsyl amino acids on (R)-and (S)-NEC-β-CD columns. For dansyl amino acids, only the inclusion complexation is the dominant factor. Three different chiral recognition models containing π-π interaction, inclusion complexation and hydrogen bonding were proposed for the separation of the 3,5-dinitrobenzoyl amino acid enantiomers, depending on the size and shape of amino acids.

Prevention of Protein Loss Using A Shield Coating According to Moisture Behavior in Human Hair (수분거동 패턴에 따른 차폐막 설정을 통한 모발단백질 소실방지)

  • Song, Sang-Hun;Lim, Byung Tack;Son, Seong Kil;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.1
    • /
    • pp.57-65
    • /
    • 2020
  • To prevent loss of hair protein during hair washing process by water through, a shield coating the pathway of water molecules was studied. Hydrophobic virgin hair, hydrophilic hair, which was damaged only methyleicosanoic acid (18-MEA) on the surface, and a repaired hair re-bound 18-MEA, were prepared and water mass changes by as heat were measured. Results showed that hydrophobic hairs followed bi-exponential function of 39 s and 151 s and other two hairs exhibited fast- and mono-exponential decay with 83 s, reflecting the extraction of water molecules without any resistance at the hydrophobic surface. On the assumption that hydrophobic surface resists an extraction of protein in water during the wash, the protein concentrations were compared from the hair of hydrophobic and hydrophilic surface. The extracted hair proteins were 179 and 148 ㎍/mL from the hair coated with hydrophilic polyethylene glycol (PEG) and hydrophobic polydimethylsiloxane (PDMS), respectively. This study suggested that hydrophobic coating on the hair surface could be used to prevent protein loss in wash, represented by LFM. In conclusion, this research provides some useful information to contribute to the development of hair washing products that can prevent protein loss in the cleaning process by granting hydrophobic coatings.

Nano Adhesion and Friction of $DDPO_4$ and $ODPO_4$ SAM Coatings ($DDPO_4$$ODPO_4$SAM 코팅의 나노 응착 및 마찰 특성 연구)

  • ;;;Andrei Ya Grigoriev
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.267-272
    • /
    • 2002
  • Nano adhesion between SPM(scanning probe microscope) tips and DDPO$_4$(octadecylphosphoric acid ester.) and ODPO$_4$(octadecylphosphoric acid ester) SAM(self-assembled monolayer.) was experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes with the applied normal load. DDPO$_4$ and ODPO$_4$ SAM were formed on Ti and TiOx surfaces. Ti and TiOx were coated on the Si wafer by ion sputtering. Adhesion and friction of DDPO$_4$ and ODPO$_4$ SAM surfaces were compared with those of OTS(octadecyltrichlorosilane) SAM and DLC surfaces. DDPO$_4$ and ODPO$_4$ SAM converted the Ti and TiOx surfaces to be hydrophobic. When the surface was hydrophobic, the adhesion and friction forces were found lower than those of bare surfaces. Work of adhesion was also discussed to explain how the surface was converted into hydrophobic Results also showed that tribological characteristics of DDPO$_4$ and ODPO$_4$ SAM had good properties in the adhesion, friction, wetting angle and work of adhesion. DDPO$_4$ and ODPO$_4$ SAM could be one of the candidates for the bio-MEMS elements.

Influence of Flowability of Ceramic Tile Granule Powders on Sintering Behavior of Relief Ceramic Tile (과립분말 유동성 변화가 부조세라믹타일의 소결거동에 미치는 영향)

  • Shin, Cheol;Choi, Jung-Hoon;Kim, Jung-Hun;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.550-557
    • /
    • 2020
  • Used in the ceramic tile market as a representative building material, relief ceramic tile is showing increased demand recently. Since ceramic tiles are manufactured through a sintering process at over 1,000 ℃ after uniaxial compression molding by loading granule powders into a mold, it is very important to secure the flowability of granular powders in a mold having a relief pattern. In this study, kaolin, silica, and feldspar are used as starting materials to prepare granule powders by a spray dryer process; the surface of the granule powders is subject to hydrophobic treatment with various concentrations of stearic acid. The effect on the flowability of the granular powder according to the change of stearic acid concentration is confirmed by measuring the angle of repose, tap density, and compressibility, and the occurrence of cracks in the green body produced in the mold with the relief pattern is observed. Then, the green body is sintered by a fast firing process, and the water absorption, flexural strength, and durability are evaluated. The surface treatment of the granule powders with stearic acid improves the flowability of the granule powders, leading to a dense microstructure of the sintered body. Finally, the hydrophobic treatment of the granule powders makes it possible to manufacture relief ceramic tiles having a flexural strength of 292 N/cm, a water absorption of 0.91 %, and excellent mechanical durability.