• Title/Summary/Keyword: hydrophilic modification

Search Result 155, Processing Time 0.023 seconds

A novel method of surface modification to polysulfone ultrafiltration membrane by preadsorption of citric acid or sodium bisulfite

  • Wei, Xinyu;Wang, Zhi;Wang, Jixiao;Wang, Shichang
    • Membrane and Water Treatment
    • /
    • v.3 no.1
    • /
    • pp.35-49
    • /
    • 2012
  • In membrane processes, various agents are used to enhance, protect, and recover membrane performance. Applying these agents in membrane modification could potentially be considered as a simple method to improve membrane performance without additional process. Citric acid (CI) and sodium bisulfite (SB) are two chemicals that are widely used in membrane feed water pretreatment and cleaning processes. In this work, preadsorptions of CI and SB were developed as simple methods for polysulfone ultrafiltration membrane modification. It was found that hydrogen bonding and Van Der Waals attraction could be responsible for the adsorptions of CI and SB onto membranes, respectively. After modification with CI or SB, the membrane surfaces became more hydrophilic. Membrane permeability improved when modified by SB while decreased a little when modified by CI. The modified membranes had an increase in PEG and BSA rejections and better antifouling properties with higher flux recovery ratios during filtration of a complex pharmaceutical wastewater. Moreover, membrane chlorine tolerance was elevated after modification with either agent, as shown by the mechanical property measurements.

Immobilization and Grafting of Acrylic Acid on Polyethylene Surface by Ar-plasma Treatment (알곤 플라즈마처리에 의한 폴리에틸랜 표면상의 아크릴산 고정화와 그라프팅)

  • 김민정;서은덕
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.279-286
    • /
    • 2002
  • For surface modification of polymers with hydrophilic functional groups, acrylic acid was grafted and immobilized on the surface of polyethylene(PE) by cold-plasma treatment using Ar gas. The modifications were identified by analysis of ATR-IR spectrum and by the measurement of contact angles. Compared to virgin PE significant decreases in contact angle were observed for both the grafted PE and the immobilized PE. The decreases of contact angle were in the range of 47~$53^{\circ}$ for grafted PE and 23~$26^{\circ}$ for immobilized PE. The degree of hydrophilicity depended strongly on the plasma-treating time and discharge power. For the case of grafting it has show that the longer plasma-treating time, the higher hydrophilic character. For the case of immobilization, whereas, higher discharge power and longer exposure to plasma have shown the detrimental effect for the preparation of hydrophilic PE surface due to the decrease of carboxyl group by ablation effect. The decrease in adhesion strength of immobilized PE. compared to grafted PE, was also attributed to the ablation of carboxyl group.

Lifetime Prolongation of Poly (dimethylsiloxane) Surface Modification via 2-Hydroxyethyl Methacrylate Grafting for Electroosmotic Flow

  • Park, Eun-Soo;Yang, Sang-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.142-144
    • /
    • 2004
  • To use Poly-dimethylsiloxane (PDMS) for the electrokinetic flow channel, the PDMS surface must be modified to be hydrophilic. With $O_2$ plasma treatment, it is difficult to maintain hydrophilicity for more than one day. In this paper, we present the chemical modification of the PDMS surface using 2-Hydroxyethyl methacrylate (HEMA) to prolong hydrophilicity lifetime. The oxide radicals generated temporarily on the PDMS surface by $O_2$ plasma are grafted with HEMA. Once the PDMS samples have been grafted, they demonstrate improved hydrophilicity retainment and electroosmotic flow characteristics compared to the untreated PDMS and the oxidized PDMS following the $O_2$ plasma process. This phenomenon was verified by the contact angles, Fourier transform infrared (FTIR) spectra and electro osmotic flow rates observed for more than 300 hours.

Effects of Surface Modification with Amino Terminated Polydimethylsiloxane(ATP) on the Corrosion Protection of Epoxy Coating

  • Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.103-109
    • /
    • 2009
  • An epoxy coating was designed to give a hydrophobic property on its surface by modifying it with three types of Amino Terminated Polydimethylsiloxane (ATP), and then effects of the modification on the structure, surface hydrophobic tendency, water transport behavior and hence corrosion protectiveness of the modified epoxy coating were examined using FT-IR spectroscopy, hydrothermal cyclic test, and impedance test. The surface of epoxy coating was changed from hydrophilic to hydrophobic property due primarily to a phase separation tendency between epoxy and modifier by the modification. The phase separation tendency is more appreciable when modified by ATP with higher molecular weight ATP at higher content. Water transport behavior of the modified epoxy coating decreased more in that with higher hydrophobic surface property. The resistance to localized corrosion of the modified epoxy coated carbon steel was well agreed with its water transport behavior and hydrophobic tendency.

Surface Modification of Automobile Rubber by Various Plasma Treatments

  • Lee, Seung-Hun;Kim, Seock-Sam
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.26-30
    • /
    • 2008
  • This study examined the surface modification characteristics of NBR using sealing in automobile. Surfaces of NBR were modified by RF power Ar plasma treatment. In experiment, pressure, flux, temperature were fixed and RF bias voltage. Treatment time was changed. In friction test, we used PTFE grease. After modification, surfaces of NBR showed many grooves, hydrophilic functional groups, and lipophilic functional groups. As increasing treating voltage and time, the amount of them was increased. And wetting angle and friction coefficient was decreased with increasing treating voltage and time. However, the pattern of changing friction coefficient was not fixed.

A Study on the Hydrophobicity Modification and Physical Properties of Tencel Regenerated Fibers for Polypropylene Resin Composites (폴리프로필렌 수지 복합을 위한 텐셀 재생섬유의 소수화 표면개질 특성 연구)

  • Yoon, Songhyun;Kim, Mikyung;Lee, Eunsoo
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.258-268
    • /
    • 2021
  • This study conducted on the introduction of recycled cellulose fibers, which are widely used in the textile industry as eco-friendly biomass materials, into polypropylene resins, which are mainly used for interior and exterior materials such as door trims and console parts of automobiles. In general, cellulose fibers can affect mechanical properties and have a lightening effect when used as a reinforcing agent. However, since cellulose fibers have hydrophilic properties and have relatively low compatibility with industrial polymer resins, they are used in combination through fiber hydrophobic surface treatment. Therefore, through this study, the reforming reaction conditions optimized in terms of hydrophobicity and workability for cellulose fibers are studied. Furthermore, polypropylene containing surface-modified cellulose fibers was prepared to compare physical properties by fiber content and study optimized content.

Effect of Plasma Modification of Woven type Carbon Fibers on the Wear Behavior of Carbon Fiber/Epoxy Composites (평직 탄소섬유의 플라즈마 처리 및 이에 따른 탄소섬유/에폭시 복합재의 마모 특성)

  • Lee, Jae-Seok;Rhee, Kyong-Yop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.113-118
    • /
    • 2010
  • For a present study, woven type carbon fibers were surface-modified by oxygen plasma to improve adhesive strength between carbon fibers and epoxy. The change of hydrophilic properties by the plasma modification was investigated through the contact angle measurement and the calculation of surface energy of carbon fiber due to the oxygen plasma modification. FESEM and XPS analyses were performed to study the chemical and physical changes on the surface of carbon fibers due to the oxygen plasma modification. Pin-on-disk wear tests were conducted under dry condition using unmodified and plasma-modified carbon/epoxy composites to investigate the effect of plasma modification on the wear behavior of woven type carbon/epoxy composites. The results showed that the friction coefficient and the wear rate of plasma-modified carbon/epoxy composites were lower than those of unmodified carbon/epoxy composites, respectively. XPS analysis showed that new functional group of a carbonyl type was created on the carbon fibers by the $O_2$ plasma treatment, which enhanced adhesive strength between carbon fibers and epoxy, leading to improve wear properties

Surface modification of silica aerogel by surfactant adsorption and heat treatment methods (계면활성제 흡착 및 열처리를 이용한 실리카 에어로겔의 표면 개질)

  • Kim, Nam-Yi;Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.282-289
    • /
    • 2010
  • In preparation of silica aerogel-based hybrid coating materials, the combination of hydrophobic aerogel with organic polar binder material is shown to be very limited due to dissimilar surface property between two materials. Accordingly, the surface modification of the aerogel would be required to obtain compatibilized hybrid coating sols with homogeneous dispersion. In this study, the surface of silica aerogel particles was modified by using both surfactant adsorption and heat treatment methods. Four types of surfactants with different molecular weights and HLB values were used to examine the effect of chain length and hydrophilicity. The surface property of the modified aerogel was evaluated in terms of visible observation for aerogel dispersion in water, water contact angle measurement, and FT-IR analysis. In surface modification using surfactants, the effects of surfactant type and content, and mixing time as process parameter on the degree of hydrophilicity for the modified aerogel. In addition, the temperature condition in modification process via heat treatment was revealed to be significant factor to prepare aerogel with highly hydrophilic property.

Effects of organic silicone additive material on physical and mechanical properties of mudstone

  • Chai, Zhaoyun;Kang, Tianhe;Chen, Weiyi
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.139-151
    • /
    • 2014
  • Mudstone is a very common rock that, when in contact with water, can exhibit considerable volume change and breakdown. This behavior of mudstone is frequently encountered in geotechnical engineering and has a considerable influence on infrastructure stability. This is particularly important in the present work, which focuses on mitigating the harmful properties of mudstone. The samples studied are of Permian Age mudstone from Shandong Province, China. Modification tests using organic silicone additive material were carried out. The mechanisms of physical properties modification of mudstone were comparatively studied using corresponding test methods, and the modification mechanism of organic silicone additive material acting on mudstone was analyzed. The following conclusions were drawn. The surface texture and characters of mudstone changed dramatically, surface character turns from hydrophilic to hydrophobic after organic silicone additive material modification. The changes in the surface character indicate a reduction in the water sensitivity of mudstone. After modification, the shape of porosity and fracture of mudstone changed unremarkable, and the total and free expansion ratios decreased obviously, whereas the strength increased markedly.

Hydrophilic/Hydrophobic Dual Surface Coatings for Membrane Distillation Desalination (막증류 담수화를 위한 친수성/소수성 이중 표면 코팅)

  • Kim, Hye-Won;Lee, Seungheon;Jeong, Seongpil;Byun, Jeehye
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.3
    • /
    • pp.143-149
    • /
    • 2022
  • Membrane distillation (MD) has emerged as a sustainable desalination technology to solve the water and energy problems faced by the modern society. In particular, the surface wetting properties of the membrane have been recognized as a key parameter to determine the performance of the MD system. In this study, a novel surface modification technique was developed to induce a Janus-type hydrophilic/hydrophobic layer on the membrane surface. The hydrophilic layer was created on a porous PVDF membrane by vapor phase polymerization of the pyrrole monomer, forming a thin coating of polypyrrole on the membrane walls. A rigid polymeric coating layer was created without compromising the membrane porosity. The hydrophilic coating was then followed by the in-situ growth of siloxane nanoparticles, where the condensation of organosilane provided quick loading of hydrophobic layers on the membrane surface. The composite layers of dual coatings allowed systematic control of the surface wettability of porous membranes. By the virtue of the photothermal property of the hydrophilic polypyrrole layer, the desalination performance of the coated membrane was tested in a solar MD system. The wetting properties of the dual-layer were further evaluated in a direct-contact MD module, exploring the potential of the Janus membrane structure for effective and low-energy desalination.