• Title/Summary/Keyword: hydrophilic acid

Search Result 377, Processing Time 0.022 seconds

A Study on the Processing of Sardine Protein Concentrate with Good Rehydration Capacity -2. Changes of Quality in Sardine Protein Concentrate during Storage and its Utilization- (복원력이 좋은 정어리 단백질 농축물의 가공 -2. 정어리 단백질 농축물의 저장안정성 및 이용-)

  • LEE Seung-Won;JOO Dong-Sik;KIM Jin-Soo;AHN Chang-Bum;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.2
    • /
    • pp.144-151
    • /
    • 1991
  • Quality stability and utilization of sardine protein concentrates were investigated. pH, water activity and amino-nitrogen contents of autoclaved and boiled products were little changed during the storage of 60 days. Available lysine contents of the both products at the initial stage of storage were 5.58g/16g-N and 5.69g/16g-N, respectively. But the available lysine contents and digestibility of the both products decreased slightly with increasing of storage time. Lipophilic and hydrophilic brown pigment formation of the both products increased during storage of 60 days, but peroxide value(POV) and thiobarbituric acid(TBA) value decreased. Total amino acid contents of the both products were in the range of $88.99{\~}89.90g/16g-N$, and the predominant ones were glutamic acid, aspartic acid, leucine and lysine. From the sensory scores of model snack, it is concluded that the sardine protein concentrate can be used as a source material for snack.

  • PDF

Antioxidant Capacity and Bioactive Composition of a Single Serving Size of Regular Coffee Varieties Commercially Available in Korea (시판 커피 한 컵에 함유된 생리활성 성분과 항산화활성)

  • Kim, Mi-Jeong;Park, Ji-Eun;Lee, Joo-Hyun;Choi, Na-Rae;Hong, Myung-Hee;Pyo, Young-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.299-304
    • /
    • 2013
  • The major hydrophilic bioactive compounds (chlorogenic acid, caffeine, total phenolics, and flavonoids) and the antioxidant capacity in a single size were evaluated for regular coffee varieties commercially available in Korea. The content of total phenols (63.83-110.12 mg gallic acid equivalents) and flavonoids (35.27-69.27 mg catechin equivalents) were spectrophotometrically determined, and the content of chlorogenic acid (5.17-69.78 mg) and caffeine (74.38-146.32 mg) were determined using HPLC-UV. All varieties of regular coffee studied showed antioxidant potential (88.78-487.52 mg trolox equivalents/serving size), which was conferred by their concentrations of phenolic compounds, caffeine and chlorogenic acid. There were significant (p<0.01) correlations between the total phenolics ($r^2$=0.732) and flavonoids ($r^2$=0.8705) and the antioxidant capacity, suggesting that these components were likely a significant contributor to the antioxidant capacity of commercial regular coffee brews.

Changes in Nutrient Levels of Aqueous Extracts from Radish (Raphanus sativus L.) Root during Liquefaction by Heat and Non-heat Processing

  • Bae, Ro-Na;Lee, Young-Kyu;Lee, Seung-Koo
    • Horticultural Science & Technology
    • /
    • v.30 no.4
    • /
    • pp.409-416
    • /
    • 2012
  • The amount of cellular components including soluble sugars, amino acids, organic acids and glucosinolates (GLS) was investigated during radish root processing to develop a radish beverage. The radish root was divided into two parts, white and green tissue, and processed separately by extracting the juice from the fresh tissue and from the boiled tissue to compare differences in the components content among the preparations. The overall palatability of both the fresh and boiled extracts from the green part of the radish was higher than that of the same extracts from the white part. The sweetness of extract by boiling increased and its pungency decreased, thereby the palatability increased by being compared to the fresh radish extract. The sweetness was affected by sucrose not by glucose or fructose of monosaccharides by showing different sucrose contents according to treatment comparing palatability. Malic acid was identified as primary organic acid, and the content was higher in both the fresh and boiled extracts from the white part than in the extracts from the green part of the radish. The fresh extract from the green part of the radish contained more essential amino acids, such as threonine and valine, and more hydrophilic amino acids including glutamic acid, aspartic acid, and arginine than those of the fresh extract from the white part, suggesting the green fresh part is more palatable than the white fresh part. The main sulfur compound was ethylthiocyanate in radish, and others were butyl isothiocyanate, dimethyl-disulfide, and 4-methylthio-3-butylisothiocyanate. The four GLS were detected much more in the fresh green and fresh white parts of the radish because they evaporated during boiling. The contents of the four sulfur compounds were higher in the white fresh part than in the green fresh part, which is likely the reason the pungency was higher and the palatability was lower in the white fresh part than in the green fresh part of the radish. The ascorbic acid content was higher in the fresh extract compared to the boiled extracts from both the green and white parts. Taken together, these findings indicate that fresh radish extract is superior to obtain in terms of retaining desirable nutritional and functional components for health.

Preparation of Ion Exchange Membranes for Fuel Cell Based on Crosslinked Poly(vinyl alcohol) with Poly(acrylic acid-co-maleic acid)

  • Kim, Dae-Sik;Park, Ho-Bum;Lee, Chang-Hyun;Lee, Young-Moo;Moon, Go-Young;Nam, Sang-Yong;Hwang, Ho-Sang;Yun, Tae-II;Rhim, Ji-Won
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.314-320
    • /
    • 2005
  • Crosslinked poly(vinyl alcohol) (PVA) membranes were prepared at various crosslinking temperatures using poly(acrylic acid-co-maleic acid) (PAM) containing different PAM contents. The thermal properties of these PVA/PAM membranes prepared at various reaction temperatures were characterized using differential scanning calorimetry (DSC). The proton conductivity and methanol permeability of PVA/PAM membranes were then investigated as PAM content was varied from 3 to 13 wt%. It was found that the proton and methanol transport were dependent on PAM content in their function both as crosslinking agent and as donor of hydrophilic -COOH groups. Both these properties decreased monotonously with increasing PAM concentration. The proton conductivities of these PVA/PAM membranes were in the range from $10^{-3}\;to\;10^{-2}S/cm$ and the methanol permeabilities from $10^{-7}\;to\;10^{-6}cm^{2}/sec$. In addition, the effect of operating temperature up to $80^{\circ}C$ on ion conductivity was examined for three selected membranes: 7, 9 and 11 wt% PAM membranes. Ion conductivity increased with increasing operating temperature and showed and S/cm at $80^{\circ}C$, respectively. The effects of crosslinking and ionomer group concentration were also examined in terms of water content, ion exchange capacity (IEC), and fixed ion concentration. In addition, the number of water molecules per ionomer site was calculated using both water contents and IEC values. With overall consideration for all the properties measured in this study, $7{\sim}9\;wt%$ PAM membrane prepared at $140^{\circ}C$ exhibited the best performance. These characteristics of PVA/PAM membranes are desirable in applications related to the direct methanol fuel cell (DMFC).

Study on the Relationship between Skin Dryness and Amino Acids in Stratum Corneum (아미노산 동시분석을 통한 피부보습능과 각질 중 아미노산 함량과의 상관관계 연구)

  • Joo, Kyung-Mi;Han, Ji-Yeon;Son, Eui-Dong;Nam, Gae-Won;Jeong, Hye-Jin;Lim, Kyung-Min;Cho, Jun-Cheol
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.1
    • /
    • pp.75-82
    • /
    • 2012
  • Natural moisturizing factors (NMFs) are hydrophilic and water-soluble components in stratum corneum of the skin. NMFs absorb water from outer environment and enhance the water-holding capacity of stratum corneum and thereby, prevent the dryness and increase flexibility and plasticity of skin. NMFs are mainly composed of amino acids and their metabolites that are produced from the degradation of filaggrin. Here we established a simultaneous quantification method for 22 amino acids in tape-stripped stratum corneum samples using UPLC-PDA. With this method, we analyzed amino acid contents from tape-stripped stratum corneum samples of forearm and forehead regions from 15 healthy volunteers. Amino acid contents of inner (or upper) region were higher than outer (or lower) region of stratum corneum. Amino acid contents of stratum corneum of forearm were higher by 1.5 fold than forehead region. Of note, total amino acid contents were significantly and inversely correlated with trans-epidermal water loss (TEWL), an index for skin barrier function. Especially, Ser, Glu, Gly, Ala and Thr were determined to positively affect skin mositurizing activities. In conclusion, we could demonstrate that amino acid contents of stratum corneum are closely linked with skin barrier and moisturizing function, providing an important and fundamental methodology for the study of amino acids in skin physiology.

Autoradiographic Verification of Transdermal Penetration of Oleic Acid-conjugated Peptide Nanosomes (자가방사법에 의한 올레산이 결합된 펩타이드의 피부침투 확인)

  • Lee, Kyung-Eun;Jung, Min-Kyo;Eum, Jai-Hoon;Jung, Se-Hui;Ha, Kwon-Soo;Park, Jeong-Hae;Lee, Jin-Sung;Han, Sung-Sik;Choe, Myeon
    • Applied Microscopy
    • /
    • v.40 no.4
    • /
    • pp.185-191
    • /
    • 2010
  • Short peptides are potentially effective materials as cosmeceuticals, but their delivery across the skin can be problematic due to the ionic nature of peptides and the structure of the skin. For short peptide to be utilized as cosmeceuticals, its ability to penetrate the skin must be altered. In this study, we conjugated the widely used procollagen type I signal peptide, KTTKS, with oleic acid to improve the lipophilic properties of the peptide, and used the oleic acid-conjugated peptides to construct cosmeceutical nanosomes. Then we examined the penetration of cosmeceutical nanosomes prepared from isotope-labeled peptide into the skin after transdermal application using autoradiography. Because of its hydrophilic property of penta-peptide, the penta-peptide itself was not able to be penetrated through the stratum corneum of the skin. In contrast, nanosomes made from olecic acid conjugated penta-peptide were able to be penetrated through the stratum corneum effectively. Autoradiography showed the precise penetration points to dermal layer, demonstrating the appropriateness of this method for clarifying the mechanism of penetration of transdermal delivery systems.

A Study on Morphology and Mechanical Properties of Biodegradable Polymer Nanocomposites (생분해성 고분자 나노복합체의 형태학 및 기계적 특성 연구)

  • Jang, Sang Hee
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.401-409
    • /
    • 2013
  • BBiodegradable polymers have attracted great attention because of the increased environmental pollution by waste plastics. In this study, PLA (polylactic acid)/Clay-20 (Cloisite 20) and PLA (polylactic acid)/PBS (poly(butylene succinate)/Clay-20 (Cloisite 20) nanocomposites were manufactured in a twin-screw extruder. Specimens for mechanical properties of PLA/Clay-20 and PLA/PBS (90/10)/Clay-20 nanocomposites were prepared by injection molding. Thermal, mechanical, morphological and raman spectral properties of two nanocomposites were investigated by differential scanning calorimetry (DSC), tensile tester, scanning electron microscopy (SEM) and raman-microscope spectrophotometer, respectively. In addition, hydrolytic degradation properties of two nanocomposites were investigated by hydrolytic degradation test. It was confirmed that the crystallinity of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposite was increased with increasing Clay-20 content and the Clay-20 is miscible with PLA and PLA/PBS resin from DSC and SEM results. Tensile strength of two nanocomposites was decreased, but thier elongation, impact strength, tensile modulus and flexural modulus were increased with an increase of Clay-20 content. The impact strength of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposites with 5 wt% of Clay-20 content was increased above twice than that of pure PLA and PLA/PBS (90/10). The hydrolytic degradation rate of PLA/Clay-20 nanocomposite with 3 wt% of Clay-20 content was accelerated about twice than that of pure PLA. The reason is that degradation may occur in the PLA and Clay-20 interface easily because of hydrophilic property of organic Clay-20. It was confirmed that a proper amount of Clay-20 can improve the mechanical properties of PLA and can control biodegradable property of PLA.

Polymeric Micelle Using Poly((R)-3-hydroxybutyric acid)/Poly(ethylene glycol) Amphiphilic Block Copolymer for Drug Delivery System (Poly((R)-3-hydroxybutyric acid)/Poly(ethylene glycol) 양친성 블록 공중합체를 이용한 약물전달체용 고분자 미셀)

  • Jeong, Kwan-Ho;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.512-518
    • /
    • 2006
  • A biodegradable polymer poly((R) -3-hydroxybutyric acid) (PHB) was conjugated with a hydrophilic polymer poly(ethylene glycol) (PEG) by the ttansesterification reaction to form the amphiphilic block copolymer. PHB with low molecular weight ($3000{\sim}30000$) was appropriated for the drug delivery materials. High molecular weight PHB was hydrolyzed by an acid-catalyst to produce the low molecular weight one. Amphiphilic block copolymer was formed the self-assembled polymeric micelle system in the aqueous solution that the hydrophillic PEG was wraped the hydrophobic PHB. Generally, polymeric micelle forms the small particle between $10{\sim}200nm$. These polymeric micelle systems have been widely used for the drug delivery systems because they were biodegradable, biocompatible, non-toxic and patient compliant. The hydroxyl group of PEG was substituted with carboxyl group which has the reactivity to the ester group of PHB. Amphiphilic block copolymer was conjugated between PHB, and modified PEG at $176^{\circ}C$ which was higher than the melting point of PHB. Transesterification reaction was verified with DSC, FTIR, $^1H-NMR$. In the aqueous solution, critical micelle concentration (CMC) of the mPEG-co-PHB copolymer measured by the fluororescence scanning spectrometer was $5{\times}10^{-5}g/L$. The shape and size of the nanoparticle was taken by dynamic light scattering and atomic force microscopy. The size of the nanoparticle was about 130 nm and the shape was spherical. Our polymeric micelle system can be used as the passive targeting drug delivery system.

A Study on the Design of Solid Lipid Nanoparticles for enhanced Skin Penetration of Pantothenic Acid (Pantothenic acid의 피부 투과 개선을 위한 고형지질나노입자설계 연구)

  • Yeo, Sooho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.915-921
    • /
    • 2021
  • In this study, we designed pantothenic acid (PA) loaded solid lipid nanoparticles (SLNs) for enhanced skin penetration of PA that is used for moisturizing agent in cosmetics with hydrophilic property. SLNs were prepared using various lipids and surfactants. PA loaded SLNs were fabricated using double emulsion method. The fabricated PA loaded SLNs assessed particle size, polydispersity index, zeta potential, loading capacity. Skin penetration study was conducted using artificial skin tissue originated from human epidermis as one of the reconstructed human epidermis models. The mean particle size and zeta potential of SLNs ranged from 192.15 nm to 369.87 nm and -21.39 mV to -40.55 mV, respectively. The loading efficiency and loading amount of PA loaded SLNs were ranged from 44.36% to 57.16% and 12.60% to 16.36%, respectively. The results of penetration demonstrated that all SLNs improved PA skin penetration. In addition, the amount of PA from SLNs were approximately 3.8 - 8.8 times higher than that from PA solution. Therefore, the fabricated SLNs demonstrated the enhancment of skin penetration of PA. Particularly, the SLN, which used glyceryl behenate and Span 60, showed optimal skin penetration of PA.

Synthesis of Polymeric Surfactants Using CSTR and Their Emulsion PSA Properties (연속 교반 반응기를 이용한 고분자 유화제 합성 및 에멀션 점착 물성)

  • Seung-Min Lim;Myung-Cheon Lee
    • Journal of Adhesion and Interface
    • /
    • v.24 no.3
    • /
    • pp.77-85
    • /
    • 2023
  • In this research, polymeric anionic surfactants having various molecular weights and acid values were synthesized using a continuous stirred tank reactor (CSTR). The CSTR has an advantage of higher production rate and more constant product properties compared to batch and semi-batch reactors. The polymeric surfactants were made using butyl acrylate as a hydrophobic group and acrylic acid as a hydrophilic group. The synthesized polymeric surfactants were ionized with alkali solution and were used as an anionic surfactant. To investigate the properties as a surfactant, the properties of the synthesized surfactant, such as acid value, critical micelle concentration (CMC) and molecular weight, were measured. The results showed that the acid values of the polymeric surfactants were 60 to 380 and a number average molecular weight were 8,000 to 13,000 g/mol. Also, it was found that the CMC was around 0.01 g/ml, which showed similar level values with ordinary surfactant. To prove the performance of the polymeric surfactant, acrylic emulsion PSAs were synthesized using the acquired polymeric surfactant. The results showed that the maximum peel strength of 21.24 N/25mm when acid value was 150 and molecular weight was 8,500 g/mol. The values of peel strength and initial tack of acrylic emulsion PSAs using polymeric surfactant synthesized in this study showed much higher than those of reference PSAs synthesized using ordinary anionic surfactant, SDS (Sodium Dodecyl Sulfate) and SDS/TRX (Triton X-100).