• Title/Summary/Keyword: hydrolyze

Search Result 258, Processing Time 0.031 seconds

Studids on the acid stable protease from Penicillium sp. part I. Isolation of Penicillium sp. and the properties of the acid proease. (내산성 Protease에 관한 연구 (제1보) 균의 분리 및 효소학적 기본성질에 대하여)

  • 김상열
    • Microbiology and Biotechnology Letters
    • /
    • v.1 no.2
    • /
    • pp.93-98
    • /
    • 1973
  • The acid protease was isolated from the culture broth of the Penicillum sp. grown in the wheat bran media. 'quot;The crude purification of this enzyme was carried out by extraction with distilled water and precipitated with saturated ammonium sulfate. " The activity of this enzyme was found to be very strong by Folin′s colorimetric method. The results were as follows. 1. The optimum pH of the enzyme activity was at 3.0 and its optimum temperature was 5$0^{\circ}C$. 2. Although the enzyme activity to hydrolyze casein was maximal at 5$0^{\circ}C$, its activity decreased rapidly by about 50%, treated at 5$0^{\circ}C$ for 30 min. When treated at 4$0^{\circ}C$ for 60 min, the enzyme activity decreased to 75% of original value and did not decrease any more. 3. The enzyme was stable at pH 2.0 to 6.0. 4. This enzyme activity was not effected by metal ions; C $d^{++}$, Z $n^{++}$, $Co^{++}$, H $g^{++}$, M $n^{++}$, P $b^{++}$, $Mg^{++}$, L $i^{+}$, C $u^{++}$, $Ba^{++}$, A $g^{+}$, $Al^{+++}$, $Ca^{++}$, F $e^{++}$, and F $e^{++}$ 5. Also, it was not effected by treatemnt of EDTA.

  • PDF

Partial Purification and Characterization of Exoinulinase from Kluyveromyces marxianus YS-1 for Preparation of High-Fructose Syrup

  • Singh, Ram Sarup;Dhaliwal, Rajesh;Puri, Munish
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.733-738
    • /
    • 2007
  • An extracellular exoinulinase($2,1-\beta-D$ fructan fructanohydrolase, EC 3.2.1.7), which catalyzes the hydrolysis of inulin into fructose and glucose, was purified 23.5-fold by ethanol precipitation, followed by Sephadex G-100 gel permeation from a cell-free extract of Kluyveromyces marxianus YS-1. The partially purified enzyme exhibited considerable activity between pH 5 to 6, with an optimum pH of 5.5, while it remained stable(100%) for 3 h at the optimum temperature of $50^{\circ}C$. $Mn^{2+}\;and\;Ca^{2+}$ produced a 2A-fold and 1.2-fold enhancement in enzyme activity, whereas $Hg^{2+}\;and\;Ag^{2+}$ completely inhibited the inulinase. A preparation of the partially purified enzyme effectively hydrolyzed inulin, sucrose, and raffinose, yet no activity was found with starch, lactose, and maltose. The enzyme preparation was then successfully used to hydrolyze pure inulin and raw inulin from Asparagus racemosus for the preparation of a high-fructose syrup. In a batch system, the exoinulinase hydrolyzed 84.8% of the pure inulin and 86.7% of the raw Asparagus racemosus inulin, where fructose represented 43.6mg/ml and 41.3mg/ml, respectively.

Evolution of E. coli Phytase for Increased Thermostability Guided by Rational Parameters

  • Li, Jiadi;Li, Xinli;Gai, Yuanming;Sun, Yumei;Zhang, Dawei
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.419-428
    • /
    • 2019
  • Phytases are enzymes that can hydrolyze phytate and its salts into inositol and phosphoric acid, and have been utilized to increase the availability of nutrients in animal feed and mitigate environmental pollution. However, the enzymes' low thermostability has limited their application during the feed palletization process. In this study, a combination of B-value calculation and protein surface engineering was applied to rationally evolve the heat stability of Escherichia coli phytase. After systematic alignment and mining for homologs of the original phytase from the histidine acid phosphatase family, the two models 1DKL and 1DKQ were chosen and used to identify the B-values and spatial distribution of key amino acid residues. Consequently, thirteen potential amino acid mutation sites were obtained and categorized into six domains to construct mutant libraries. After five rounds of iterative mutation screening, the thermophilic phytase mutant P56214 was finally yielded. Compared with the wild-type, the residual enzyme activity of the mutant increased from 20% to 75% after incubation at $90^{\circ}C$ for 5 min. Compared with traditional methods, the rational engineering approach used in this study reduces the screening workload and provides a reference for future applications of phytases as green catalysts.

Debonding of microbially induced carbonate precipitation-stabilized sand by shearing and erosion

  • Do, Jinung;Montoya, Brina M.;Gabr, Mohammed A.
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.429-438
    • /
    • 2019
  • Microbially induced carbonate precipitation (MICP) is an innovative soil improvement approach utilizing metabolic activity of microbes to hydrolyze urea. In this paper, the shear response and the erodibility of MICP-treated sand under axial compression and submerged impinging jet were evaluated at a low confining stress range. Loose, poorly graded silica sand was used in testing. Specimens were cemented at low confining stresses until target shear wave velocities were achieved. Results indicated that the erodibility parameters of cemented specimens showed an increase in the critical shear stress by up to three orders of magnitude, while the erodibility coefficient decreased by up to four orders of magnitude. Such a trend was observed to be dependent on the level of cementation. The treated sand showed dilative behavior while the untreated sands showed contractive behavior. The shear modulus as a function of strain level, based on monitored shear wave velocity, indicated mineral debonding may commence at 0.05% axial strain. The peak strength was enhanced in terms of emerging cohesion parameter based on utilizing the Mohr-Coulomb failure criteria.

Increased Amino Acid Absorption Mediated by Lacticaseibacillus rhamnosus IDCC 3201 in High-Protein Diet-Fed Mice

  • Hayoung Kim;Jungyeon Kim;Minjee Lee;Hyeon Ji Jeon;Jin Seok Moon;Young Hoon Jung;Jungwoo Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.511-518
    • /
    • 2023
  • The use of dietary protein products has increased with interests in health promotion, and demand for sports supplements. Among various protein sources, milk protein is one of the most widely employed, given its economic and nutritional advantages. However, recent studies have revealed that milk protein undergoes fecal excretion without complete hydrolysis in the intestines. To increase protein digestibility, heating and drying were implemented; however, these methods reduce protein quality by causing denaturation, aggregation, and chemical modification of amino acids. In the present study, we observed that Lacticaseibacillus rhamnosus IDCC 3201 actively secretes proteases that hydrolyze milk proteins. Furthermore, we showed that co-administration of milk proteins and L. rhamnosus IDCC 3201 increased the digestibility and plasma concentrations of amino acids in a high-protein diet mouse model. Thus, food supplementation of L. rhamnosus IDCC 3201 can be an alternative strategy to increase the digestibility of proteins.

Action of Extracellular Protease of Aspergillus terreus on Human Plasma Hemostasis Proteins

  • Alexander A. Osmolovskiy;Elena S. Zvonareva;Nina A. Baranova;Valeriana G. Kreyer
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.2
    • /
    • pp.167-173
    • /
    • 2023
  • Proteolytic enzymes secreted by Aspergillus, as pathogenicity factors, affect blood coagulation and fibrinolysis, and therefore the target proteins of their action in the bloodstream are of significant interest. In the present study, the action of the isolated protease of A. terreus 2 on different human plasma proteins was shown. The protease of A. terreus 2 exhibited the highest proteolytic activity against hemoglobin, which was 2.5 times higher than the albuminolytic activity shown in both of the protein substrates used. In addition, the protease has significant ability to hydrolyze both fibrin and fibrinogen. However, the inability of the A. terreus 2 protease to coagulate rabbit blood plasma and coagulate human and bovine fibrinogen indicates the severity of the enzyme's action on human blood coagulation factors. It should be considered as a potential indicator of this isolated protease's participation in fungal pathogenesis. The protease shows no hemolytic activity. Furthermore, its activity is insignificantly inhibited by thrombin inhibitors, and is not inhibited by plasmin inhibitors.

Backbone NMR chemical shift assignment for the substrate binding domain of Escherichia coli HscA

  • Jin Hae Kim
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.28 no.2
    • /
    • pp.6-9
    • /
    • 2024
  • HscA is a Hsp70-type chaperone protein that plays an essential role to mediate the iron-sulfur (Fe-S) cluster biogenesis mechanism in Escherichia coli. Like other Hsp70 chaperones, HscA is composed of two domains: the nucleotide binding domain (NBD), which can hydrolyze ATP and use its chemical energy to facilitate the Fe-S cluster transfer process, and the substrate binding domain (SBD), which directly interacts with the substrate, IscU, the scaffold protein of an Fe-S cluster. In the present work, we prepared the isolated SBD construct of HscA (HscA(SBD)) and conducted the solution-state nuclear magnetic resonance (NMR) experiments to have its backbone chemical shift assignment information. Due to low spectral quality of HscA(SBD), we obtained all the NMR data from the sample containing the peptide LPPVKIHC, the HscA-interaction motif of IscU, from which the chemical shift assignment could be done successfully. We expect that this information provides an important basis to execute detailed structural characterization of HscA and appreciate its interaction with IscU.

A Novel Ubiqutin C-terminal Hydrolase (UCH-9) from Chick Skeletal Muscle: Its Purification and Charaterization

  • U, Seong-Gyun;Baek, Seong-Hui;Sin, Dong-Hun;Kim, Hye-Seon;Yu, Yeong-Jun;Jo, Jung-Myeong;Gang, Man-Sik;Jeong, Jin-Ha
    • Animal cells and systems
    • /
    • v.1 no.2
    • /
    • pp.323-328
    • /
    • 1997
  • We have previously shown that chick muscle extracts contained at least 10 different ubiquitin C-terminal hydrolases (UCHs). In the present studies, one of the enzymes, called UCH-9, was purified by conventional chromatographic procedures using $^{125}l$-labeled ubiquitin-${\alpha}$NH-MHISPPEPESEEEEE HYC (Ub-PESTc) as a substrate. The purified enzyme behaved as a 27-kDa protein under both denaturing and nondenaturing conditions, suggesting that it consists of a single polypeptide chain. It was maximally active at pHs between 7 and 8.5, but showed little or no activity at pH below 6 and above 10. Lice other UCHs, its activity was strongly inhibited by sulfhydryl blocking reagents, such as iodoacetamide, and by Ub-aldehyde. In addition to Ub-PESTc, UCH-9 hydrolyzed Ub-aNH-protein extensions, including Ub-${\alpha}NH$-carboxyl extension protein of 80 amino acids and Ubo-${\alpha}NH$-dihydrofolate reductase. However, this enzyme was not capable of generating free Ub from mono-Ub-${\varepsilon}NH$-protein conjugates and from branched poly-Ub chains that are ligated to proteins through ${\varepsilon}NH$-isopeptide bonds. This enzyme neither could hydrolyze poly-His-tagged di-Ub. These results suggest that UCH-9 may play an important role in production of free Ub and ribosomal proteins from their conjugates.

  • PDF

Effective Production of Chitinase and Chitosanase by Streptomyces griseus HUT 6037 Using Colloidal Chitin and Various Degrees of Deacetylation of Chitosan

  • Jung, Ho-Sup;Son, Jeong-Woo;Ji, Hong-Seok;Kim, Kwang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.26-31
    • /
    • 1999
  • The advantages of the organism Streptomycs griseus HUT 6037 is that the chitinase and chitosanase using chitinaceouse substrate are capable of hydrolyzing both amorphous and crystalline chitin and chitosan. We attempted to investigate the optimization of induction protocol for high-level production and secretion of chitosanase and the influence of chitin and partially deacetylated chitosan sources (75∼99% deacetylation). The maximum specific activity or chitinase has been found at 5 days cultivation with the 48 hours induction time using colloidal chitin as a carbon source. To investigate characteristic of chitosan activity according to substrate, we used chitosan with various degree of deacetylation as a carbon source and found that this strain accumulates chitosanase in the culture medium using chitosanaceous substrates rather than chitinaceous substrates. The highest chitosanase activity was also presented on 4 days with 99% deacetylated chitosan. The partially 53% deacetylated chitosan can secrete both chitinase and chitosanase which was defined as a soluble chitosan. The specific activities of chitinase and chitosanase were 0.89 at 3 days and 1.33 U/mg protein at 5 days, respectively. It indicate that chitosanase obtained from S. griseus HUT 6037 can hydrolyze GlcNAc-GlcN and GlcN-GlcN linkages by exo-splitting manner. This activity increased with increasing degree of deacetylation of chitosan. It is the first attempted to investigate the effects of chitosanase on various degrees of deacetylations of chitosan by S. griseus HUT 6037. The highest specific activity of chitosanase was obtained with 99% deacetylated chitosan.

  • PDF

R-Stereoselective Amidase from Rhodococcus erythropolis No. 7 Acting on 4-Chloro-3-Hydroxybutyramide

  • Park, Ha-Ju;Uhm, Ki-Nam;Kim, Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.552-559
    • /
    • 2008
  • Ethyl (S)-4-chloro-3-hydroxybutyrate is an intermediate for the synthesis of Atorvastatin, a chiral drug used for hypercholesterolemia. A Rhodococcus erythropolisstrain (No.7) able to convert 4-chloro-3-hydroxybutyronitrile into 4-chloro-3-hydroxybutyric acid has recently been isolated from soil. This activity has been regarded as having been caused by the successive actions of the nitrile hydratase and amidase. In this instance, the corresponding amidase gene was cloned from the R. erythropolis strain and expressed in Escherichia coli cells. A soluble active form of amidase enzyme was obtained at $18^{\circ}C$. The Ni column-purified recombinant amidase was found to have a specific activity of 3.89 U/mg toward the substrate isobutyramide. The amidase was found to exhibit a higher degree of activity when used with mid-chain substrates than with short-chain ones. Put differently, amongst the various amides tested, isobutyramide and butyramide were found to be hydrolyzed the most rapidly. In addition to amidase activity, the enzyme was found to exhibit acyltransferase activity when hydroxyl amine was present. This dual activity has also been observed in other enzymes belonging to the same amidase group (E.C. 3.5.1.4). Moreover, the purified enzyme was proven to be able to enantioselectively hydrolyze 4-chloro-3-hydroxybutyramide into the corresponding acid. The e.e. value was measured to be 52% when the conversion yield was 57%. Although this e.e. value is low for direct commercial use, molecular evolution could eventually result in this amidase being used as a biocatalyst for the production of ethyl (S)-4-chloro-3-hydroxybutyrate.