References
- Lei XG, Weaver JD, Mullaney E, Ullah AH, Azain MJ. 2013. Phytase, a new life for an "old" enzyme. Annu Rev. Anim Biosci. 1: 283-309. https://doi.org/10.1146/annurev-animal-031412-103717
- Yin HF, Fan BL, Yang B, Liu YF, Luo J, Tian XH, et al. 2006. Cloning of pig parotid secretory protein gene upstream promoter and the establishment of a transgenic mouse model expressing bacterial phytase for agricultural phosphorus pollution control. J. Animal Sci. 84: 513-519. https://doi.org/10.2527/2006.843513x
- Lei XG, Porres JM, Mullaney EJ, Brinchpedersen H. 2007. Phytase: Source, Structure and Application, pp. 505-529. In Polaina J, MacCabe AP (eds.), Industrial enzymes: Structure, function and applications, Ed. Springer, New York.
- Reetz MT, Peyralans JJ, Maichele A, Fu Y, Maywald M. 2006. Directed evolution of hybrid enzymes: Evolving enantioselectivity of an achiral Rh-complex anchored to a protein. Chem. Commun. 41: 4318-4320.
- Herger M, van Roye P, Romney DK, Brinkmann-Chen S, Buller AR, Arnold FH. 2016. Synthesis of beta-branched tryptophan analogues using an engineered subunit of tryptophan synthase. J. Am. Chem. Soc. 138: 8388-8391. https://doi.org/10.1021/jacs.6b04836
- Gabriel J. Rocklin TMC, Inna Goreshnik, Alex Ford, Scott Houliston, et al. 2017. Global analysis of protein folding using massively parallel design, synthesis, and testing. Science 357: 168-175. https://doi.org/10.1126/science.aan0693
- Reetz MT, Soni P, Fernandez L, Gumulya Y, Carballeira JD. 2010. Increasing the stability of an enzyme toward hostile organic solvents by directed evolution based on iterative saturation mutagenesis using the B-FIT method. Chem. Commun (Camb). 46: 8657-8658. https://doi.org/10.1039/c0cc02657c
- Acevedo JP, Reetaz MT, Asenjo JA, Parra LP. 2017. One-step combined focused epPCR and saturation mutagenesis for thermostability evolution of a new cold-active xylanase. Enzyme Microb. Technol. 100: 60-70. https://doi.org/10.1016/j.enzmictec.2017.02.005
- Stemmer WP. 1994. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91: 10747-10751. https://doi.org/10.1073/pnas.91.22.10747
- Chen K, Arnold FH. 1993. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc. Natl. Acad. Sci. USA 90: 5618-5622. https://doi.org/10.1073/pnas.90.12.5618
- Shivange AV, Roccatano D, Schwaneberg U. 2016. Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution. Appl. Microbiol. Biotechnol. 100: 227-242. https://doi.org/10.1007/s00253-015-6959-5
- Mootapally CS, Nathani NM, Patel AK, Jakhesara SJ, Joshi CG. 2016. Mining of ruminant microbial phytase (RPHY1) from metagenomic data of mehsani buffalo breed: identification, gene cloning, and characterization. J. Mol. Microbiol. Biotechnol. 26: 252-260. https://doi.org/10.1159/000445321
- Mittal A, Singh G, Goyal V, Yadav A. 2011. Isolation and biochemical characterization of acido-thermophilic extracellular phytase producing bacterial strain for potential application in poultry feed. Jundishapur. J. Microbiol. 4: 273-282.
- Singh B, Satyanarayana T. 2011. Phytases from thermophilic molds: Their production, characteristics and multifarious applications. Process Biochem. 46: 1391-1398. https://doi.org/10.1016/j.procbio.2011.03.009
- Hesampour A, Siadat SE, Malboobi MA, Mohandesi N, Arab SS, Ghahremanpour MM. 2015. Enhancement of thermostability and kinetic efficiency of Aspergillus niger PhyA phytase by site-directed mutagenesis. Appl. Biochem. Biotechnol. 175: 25-28. https://doi.org/10.1007/s12010-014-1243-1
- Xin GL, Porres JM. 2003. Phytase enzymology, applications, and biotechnology. Biotechnol. Lett. 25: 1787-1794. https://doi.org/10.1023/A:1026224101580
- Shivange AV, Serwe A, Dennig A, Roccatano D, Haefner S, Schwaneberg U. 2012. Directed evolution of a highly active Yersinia mollaretii phytase. Appl. Microbiol. Biotechnol. 95: 405-418. https://doi.org/10.1007/s00253-011-3756-7
- Luo H, Huang H, Yang P, Wang Y, Yuan T, Wu N, et al. 2007. A novel phytase appA from Citrobacter amalonaticus CGMCC 1696: gene cloning and overexpression in Pichia pastoris. Curr. Microbiol. 55: 185-192. https://doi.org/10.1007/s00284-006-0586-4
- Fei B, Xu H, Cao Y, Ma S, Guo H, Song T, et al. 2013. A multi-factors rational design strategy for enhancing the thermostability of Escherichia coli AppA phytase. J. Ind. Microbiol. Biotechnol. 40: 457-464. https://doi.org/10.1007/s10295-013-1260-z
- Shivange AV, Schwaneberg U, Roccatano D. 2010. Conformational dynamics of active site loop in Escherichia coli phytase. Biopolymers 93: 994-1002. https://doi.org/10.1002/bip.21513
- Noorbatcha IA, Sultan AM, Salleh HM, Amid A. 2013. Understanding thermostability factors of Aspergillus niger PhyA phytase: a molecular dynamics study. Protein J. 32: 309-316. https://doi.org/10.1007/s10930-013-9489-y
- Fei B, Cao Y, Xu H, Li X, Song T, Fei Z, et al. 2013. AppA Cterminal plays an important role in its thermostability in Escherichia coli. Curr. Microbiol. 66: 374-378. https://doi.org/10.1007/s00284-012-0283-4
- Fei B, Xu H, Zhang F, Li X, Ma S, Cao Y, et al. 2013. Relationship between Escherichia coli AppA phytase's thermostability and salt bridges. J. Biosci. Bioeng. 115: 623-627. https://doi.org/10.1016/j.jbiosc.2012.12.010
- Berkmen M, Boyd D, Beckwith J. 2005. The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase. J. Biol. Chem. 280: 11387-11394. https://doi.org/10.1074/jbc.M411774200
- Wu TH, Chen CC, Cheng YS, Ko TP, Lin CY, Lai HL, et al. 2014. Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design. J. Biotechnol. 175: 1-6. https://doi.org/10.1016/j.jbiotec.2014.01.034
-
Haiquan Yang, Xinyao Lu, Long Liu, Jianghua Li, Hyundong Shin, et al. 2013. Fusion of an oligopeptide to the N terminus of an alkaline
${\alpha}$ -amylase from Alkalimonas amylolytica simultaneously improves the enzyme's catalytic efficiency, thermal stability, and resistance to oxidation. Appl. Environ. Microbiol. 79: 3049-3058. https://doi.org/10.1128/AEM.03785-12 - M.R.N.Murthy SP. 2000. Protein thermal stability: insights from atomic displacement parameters (B values). Protein Eng. 13: 9-13. https://doi.org/10.1093/protein/13.1.9
- Reetz MT, Carballeira JD, Vogel A. 2006. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew. Chem. Int. Ed. Engl. 45: 7745-7751. https://doi.org/10.1002/anie.200602795
- Sutiono S, Carsten J, Sieber V. 2018. Structure-guided engineering of alpha-keto acid decarboxylase for the production of higher alcohols at elevated temperature. ChemSusChem. 11: 3334-3344.
- Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, Mcwilliam H, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
- Studier FW. 2005. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41: 207-234. https://doi.org/10.1016/j.pep.2005.01.016
- Liu ZQ, Mahmood T, Yang PC. 2012. Western blot: technique, theory and trouble shooting. N. Am. J. Med. Sci. 4: 429-434. https://doi.org/10.4103/1947-2714.100998
- Yin QQ, Zheng QH, Kang XT. 2007. Biochemical characteristics of phytases from fungi and the transformed microorganism. Anim. Feed Sci. Technol. 132: 341-350. https://doi.org/10.1016/j.anifeedsci.2006.03.016
- Gooch JW. 2011. Lineweaver-Burk Plot. pp. 904-904. Encyclopedic Dictionary of Polymers. Ed. Springer New York.
- Lim D, Golovan S, Forsberg CW, Jia Z. 2000. Crystal structures of Escherichia coli phytase and its complex with phytate. Nat. Struct. Biol. 7: 108-113. https://doi.org/10.1038/72371
- Martin A, Schmid FSV. 2001. In-vitro selection of highly stabilized protein variants with optimized surface. J. Mol. Biol. 309: 717-726. https://doi.org/10.1006/jmbi.2001.4698
- Alsop E, Silver M, Livesay DR. 2003. Optimized electrostatic surfaces parallel increased thermostability: a structural bioinformatic analysis. Protein Eng. 16: 871-874. https://doi.org/10.1093/protein/gzg131
- Reetz MT, Carballeira JD. 2007. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat. Protoc. 2: 891-903. https://doi.org/10.1038/nprot.2007.72
- Quezada AG, Diaz-Salazar AJ, Cabrera N, Perez-Montfort R, Pineiro A, Costas M. 2017. Interplay between protein thermal flexibility and kinetic stability. Structure 25: 167-179. https://doi.org/10.1016/j.str.2016.11.018
- Radivojac P, Obradovic Z, Smith DK, Zhu G, Vucetic S, Brown CJ, et al. 2004. Protein flexibility and intrinsic disorder. Protein Soc. 13: 71-80. https://doi.org/10.1110/ps.03128904
- Menendezarias L, Argos P. 1989. Engineering protein thermal stability. Sequence statistics point to residue substitutions in alpha-helices. J. Mol. Biol. 206: 397-406. https://doi.org/10.1016/0022-2836(89)90488-9
- Xiao S, Patsalo V, Shan B, Bi Y, Green DF, Raleigh DP. 2013. Rational modification of protein stability by targeting surface sites leads to complicated results. Proc. Natl. Acad. Sci. USA 110: 11337-11342. https://doi.org/10.1073/pnas.1222245110
- Vogt G, Argos P. 1997. Protein thermal stability: hydrogen bonds or internal packing? Folding Design. 2: S40-S46. https://doi.org/10.1016/S1359-0278(97)00062-X
- B Garrett J, A Kretz K, O'Donoghue E, Kerovuo J, Kim W, R Barton N, et al. 2004. Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Appl. Environ. Microbiol. 70:3041-3046. https://doi.org/10.1128/AEM.70.5.3041-3046.2004
Cited by
- Integrative Structural and Computational Biology of Phytases for the Animal Feed Industry vol.10, pp.8, 2019, https://doi.org/10.3390/catal10080844