• Title/Summary/Keyword: hydrolysis resistance

Search Result 88, Processing Time 0.023 seconds

ANOVA for Water Repellent Finish data (발수가공 데이터의 분산분석)

  • Yun, Jung-Beom
    • Journal of Korean Society for Quality Management
    • /
    • v.16 no.1
    • /
    • pp.43-48
    • /
    • 1988
  • Most of silicone used for water repellent finish is MHP (methyl hydrodiene polysiloxane), which is formed by hydrolysis and condensation polymerization of MHD (methyl hydrodiene dichlorosilane: Me H Si $Cl_2$). The cross-linking theory explains the water repellent mechanism of MHP. The silicone finish on fiber could improve in handle, softness, abrasion resistance, soil repellency, tear strength and crease resistance, as well as water repellency. According to using method silicone-water repellent finishing agents, could be devided into air dry type and curing type. MHP is the typical curing type of water repellent finishing agent, and this type requires the curing temperature above $150^{\circ}C$ at least. High curing temperature is the very drawback of this curing type. For this reason, there has been global interest in the lowering of its temperature. The objective of this study is to investigate merits of alkali treatment for silicone finishing by ANOVA and LSD (least significant difference).

  • PDF

Synthesis and Properties of Waterborne Polyurethane Using Epoxy Group (WPUE) (Epoxy를 사용한 수분산 폴리우레탄의 합성 및 물성)

  • Park, Ji-Yeon;Jeong, Boo-Young;Cheon, Jung-Mi;Ha, Chang-Sik;Chun, Jae-Hwan
    • Journal of Adhesion and Interface
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2015
  • In this study, Waterborne polyurethanes (WPU) using Epoxy group were synthesized with polyester polyol, epoxy resin, 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$), dimethylol propionic acid (DMPA) to improve the hydrolysis resistance and adhesion. In addition, the properties of the synthesized waterborne polyurethane was evaluated through DSC, UTM, adhesion strength. Tg of the synthesized waterborne polyurethane is shown in the vicinity of $-50^{\circ}C$. Tg were increased with as epoxy resin contents increased. The tensile strength was increased as the content of epoxy resin increases, elongation was decreased. Optimum adhesion and hydrolysis-resistance strength were obtained when polyol : epoxy ratio was 99 : 1.

Corrosion Protective Method Applicable to Air Vent Connected with a Heat Transport Pipe (열수송관에 연결된 에어벤트에 적용 가능한 부식 방지 방안)

  • Min Ji Song;Gahyun Choi;Woo Cheol Kim;Soo Yeol Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.115-122
    • /
    • 2023
  • This study aimed to elucidate causes of corrosion of heat transport pipes and air vents installed under a manhole of heat transport facilities and suggest effective anticorrosive measures by applying paints or adhesive tapes. It was found that air vent corrosion was attributed to corrosion under insulation caused by the inflow of water and the enrichment of chloride ions. The infiltrated water caused a hydrolysis of polyurethane foam (PUF) insulation by concentrating chloride ions at the interface between a pipe and the PUF. As insulator deteriorated, more chloride ions were eluted as confirmed by ion chromatograph (IC) analysis. As an effective method to prevent air vent corrosion, different types of paints and adhesive tapes with higher corrosion resistance on chloride ions were applied and environmental resistance tests were performed with those samples. Based on environmental test results of samples exposed to 10% HCl solution, it was revealed that a wax tape was the most adequate from a viewpoint of stability at operating condition, environmental resistance, surface treatment, and field applicability.

Influence of inorganic compounds on nanofiltration membrane fouling with Al hydrolysis products (알루미늄 수화물 나노여과 막오염에 대한 공존염의 영향에 관한 연구)

  • Choi, Yang-Hun;Kweon, Ji-Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.479-488
    • /
    • 2011
  • Nanofiltration was performed with polyaluminium chloride solutions at different pH conditions to understand effects of inorganic compounds on aluminum hydrolysis products, i.e., three distinctive groups of aluminum species: polymeric Al at low pH; $Al(OH)_3$ at neutral pH; and ${Al(OH)_4}^-$ at high pH. The PACl solution was prepared to be approximately 4.0mM and adjusted to the designated pH. The influence of inorganic compounds on Al species fouling was investigated with 4.9mM $CaCl_2$ and 3.5mM $MgSO_4$ because $Ca^{2+}$, $Mg^{2+}$, $Cl^-$, ${SO_4}^{2-}$ are the most common inorganics in the drinking water. NF membrane fouling was measured by flux decline rate. The impact of $CaCl_2$ was not significant on the individual Al hydrolysis products fouling. However, the flux decline rate was drastically changed in the presence of $MgSO_4$. The concentration of particulate matters was considerably increased possibly due to interaction between Al species and ${SO_4}^{2-}$ where $MgSO_4$ was introduced. The particulates were accumulated on the membrane and enhanced the hydraulic resistance of the cake layer. In addition, conductivity removal of the membrane was decreased when Al-hydroxide was dominant due to reduction of membrane surface charge. The rejection of $Ca^{2+}$and $Mg^{2+}$ were considerably different, which implys that composition of inorganics paly a role on conductivity removal.

Characterization of Single Stranded DNA-Dependent ATPase Activities of Deinococcus radiodurans RecA Protein (Deinococcus radiodurans RecA 단백질의 외가닥 DNA-의존성 ATPase 활성 분석)

  • Kim, Jong-Il
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.250-255
    • /
    • 2007
  • The RecA protein of Deinococcus radiodurans is essential for the extreme radiation resistance of this organism. The central steps involved in recombinational DNA repair require DNA-dependent ATP hydrolysis by recA protein. Key feature of RecA protein-mediated activities is the interactions with ssDNA and dsDNA. The ssDNA is the site where RecA protein filament formation nucleates and where initiation of DNA strand exchange takes place. The effect of sequence heterogeneity of ssDNA was examined in this experiment. The rate of homopolymeric synthetic ssDNA-dependent ATP hydrolysis was constant or nearly so over a broader range of pHs. For poly(dT)-dependent ATP or dATP hydrolysis, rates were generally faster, with a broader optimum between pH 7.0 and 8.0. Activities of RecA protein were affected by the ionic environment. The ATPase activity was shown to have different sensitivity to anionic species. The presence of glutamate seemed to slimulate the hydrolytic activity. Dr RecA protein was shown to require $Mg^{2+}$ ion greater than 2 mM for binding to etheno ssDNA and the binding stoichiometry of 3 nucleotide for RecA protein monomer.

Characterization of Tussah (Antheraea pernyi) Silk Fibroin Powder Prepared by HCI and NaOH (작잠견피브로인 분말의 제조와 그 특성)

  • Kweon, Hae-Yong;Lee, Kwang-Gill;Lee, Yong-Woo
    • Journal of Sericultural and Entomological Science
    • /
    • v.41 no.1
    • /
    • pp.54-60
    • /
    • 1999
  • Antheraea pernyi silk powder was prepared by treatment with HCl and NaOH. The degree of hydrolysis of Antheraea pernyi silk fiber was examined. The morphology and structural characteristics of Antheraea pernyi silk powder were investigated by using SEM, FTIR and X-ray diffractometer. As the concentration of HCl and NaOH and tratment temperature increased, in general, the degree of hydrolysis of Antheraea pernyi silk fiber increased. On the other hand, the degree of hydrolysis of Antheraea pernyi treated with 3 N NaOH at 120$^{\circ}C$ for 24 hr was 70 wt%, which was lower than that of 90$^{\circ}C$(83 wt%). The morphology of acid/alkali resistance fraction of Antheraea pernyi silk fibroin was transformed from fiber form to powered one with an increase of hydrolysis. The conformation of Antheraea pernyi silk powder characterized by FT-IR spectrometer and X-ray diffractometer ${\beta}$-sheet and ${\alpha}$-helix structure.

  • PDF

A Study on the Environmental Properties of Polyimide/Silica Composites Prepared by Sol-Gel Method (졸-겔법으로 합성된 폴리이미드/실리카 복합체의 환경적 물성에 관한 연구)

  • 박성수;홍성수;이성환;김성완;박재현;김지경;박희찬
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.481-485
    • /
    • 2003
  • Two types of polyimide/silica composite films were prepared using sol-gel method through hydrolysis and polycondensation of tetraethoxysilane (TEOS) with the polyamic acid (PAA) and end-capped PAA solution. Samples were characterized by the means of differential thermogravimetry, X-ray diffractometry, scanning electron microscopy, universal test, impedance analyzer, chemical resistance test, etc. All of the PAA/silanol solutions heat-treated at 300$^{\circ}C$ for 6h were transformed to polyimide/silica composites. It has been demonstrated that the properties of polyimide/silica composites were affected by the amount of silica addition and the bend type existed between polyimide and silica.

Response Characteristics of CNT Thin Film on Humidity by Silane Binders (실란 바인더에 따른 탄소나노튜브 박막의 감습 특성)

  • Kim, Seong-Jeen;Lee, Ho-Joong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.196-196
    • /
    • 2010
  • In this work, we deposited SWNTs/silane hybrid thin films by multiple spray-coating on glass substrate, and examined their electrical response for humidity. Generally silane binders which are often used in CNT solution to adhere CNTs to substrate well can be easily functionalized to each own group on the surface of CNTs after they are hardened by way of the hydrolysis reaction. We investigated how silane binders (TEOS,, MTMS and VTMS) in SWNTs hybrid thin films make effect to their electrical response on humidity. As the result, we observed that the resistance in the sample using TEOS was changed dramatically while it was almost invariant in the samples using MTMS and VTMS for increasing humidity.

  • PDF

Effects of Dietary Antimicrobial Agents, Probiotics or Yucca Extract on Urease Activity and Ammonia Production in the Chicken Intestine (사료중 항균제, 생균제 또는 유카 추출물이 닭의 장내 요소 분해효소 활성과 암모니아 생산에 미치는 영향)

  • 김규일;여진모
    • Korean Journal of Poultry Science
    • /
    • v.22 no.2
    • /
    • pp.105-115
    • /
    • 1995
  • The balance of microbial populations in the gastrointestinal (GI) tract of all warm-blooded animals is critical to the maintenance of health and resistance to disease. The composition of the populations can be altered by diet and environment, making the host animal susceptible to disease, and reducing growth rate and feed efficiency. Some feed additives including antimicrobial agents, prohiotics or yucca extract have been used to promote growth and feed utilization. There is evidence that part of growth-promoting effect of those feed additives results from the suppression of microbial urease activity or ammonia production in the GI contents of animals. Over 200 microbial species have been known to produce urease and the product of urea hydrolysis, ammonia, is toxic to animals. Carefully tested probiotics or other urease-suppressing agents can be a possible alternative to antimicrobial agents including antibiotics as growth promotants used for animals feeds.

  • PDF

Grafting of Casein onto Polyacrylonitrile Fiber for Surface Modification

  • Jia Zhao;Du Shanyi
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.235-240
    • /
    • 2006
  • Polyacrylonitrile (PAN) fiber was grafted with casein after alkaline hydrolysis and chlorination reactions of the original fiber. The structures and morphologies of the casein grafted fiber were characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscope (SEM). Moisture absorption, specific electric resistance, water retention value, and mechanical properties were also investigated. The results showed that casein was grafted onto the surface of the PAN fiber and the grafted PAN fiber presented better hygroscopicity compared with the untreated fiber. With proper tensile strength, the modified fiber could still meet the requirement for wearing. A mechanism was proposed to explain the deposit of casein on the synthetic acrylic fiber.