DOI QR코드

DOI QR Code

Synthesis and Properties of Waterborne Polyurethane Using Epoxy Group (WPUE)

Epoxy를 사용한 수분산 폴리우레탄의 합성 및 물성

  • Park, Ji-Yeon (Korea Institute of Footwear and Leather Technology (KIFLT)) ;
  • Jeong, Boo-Young (Korea Institute of Footwear and Leather Technology (KIFLT)) ;
  • Cheon, Jung-Mi (Korea Institute of Footwear and Leather Technology (KIFLT)) ;
  • Ha, Chang-Sik (Department of Polymer Science and Engineering, Pusan National University) ;
  • Chun, Jae-Hwan (Korea Institute of Footwear and Leather Technology (KIFLT))
  • Received : 2014.12.01
  • Accepted : 2015.02.26
  • Published : 2015.03.30

Abstract

In this study, Waterborne polyurethanes (WPU) using Epoxy group were synthesized with polyester polyol, epoxy resin, 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$), dimethylol propionic acid (DMPA) to improve the hydrolysis resistance and adhesion. In addition, the properties of the synthesized waterborne polyurethane was evaluated through DSC, UTM, adhesion strength. Tg of the synthesized waterborne polyurethane is shown in the vicinity of $-50^{\circ}C$. Tg were increased with as epoxy resin contents increased. The tensile strength was increased as the content of epoxy resin increases, elongation was decreased. Optimum adhesion and hydrolysis-resistance strength were obtained when polyol : epoxy ratio was 99 : 1.

본 연구에서는 수분산 폴리우레탄의 내가수분해성 및 접착력을 향상시키기 위하여 polyester polyol, epoxy resin, 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$), dimethylol propionic acid (DMPA)를 사용하여 epoxy를 함유한 수분산 폴리우레탄을 합성하였다. 또한 합성된 수분산 폴리우레탄의 물성은 DSC, UTM, adhesion test 등을 통해 평가하였다. 합성된 수분산 폴리우레탄의 Tg는 $-50^{\circ}C$ 부근에서 나타났으며, epoxy resin의 함량이 증가함에 따라 Tg도 상승하는 결과를 나타내었다. Epoxy resin의 함량이 증가함에 따라 인장강도는 증가하였고, 신율은 감소하였다. 또한 접착력 및 내가수분해 접착력은 polyol : epoxy = 99 : 1에서 최고값을 나타내었다.

Keywords

References

  1. G. Woods. The ICI Polurethane book 2nded., John wiley & Sons, New York (1990).
  2. G. Vertel, Polyurethane, 2nd., Hanse PUb., New York (1994).
  3. G. Oetel, Polyurethane Handbook, Haser, Cincinnati (1994).
  4. A. Saetung, L. Kaenhin, P. Klinpituksa, A. Rungvichaniwat, T. Tulyapitak, S. Munleh, I. Campistron, and J. P. Pilard, J. Appl. polym. Sci., 124, 2742 (2012). https://doi.org/10.1002/app.35318
  5. F. M. B. Coutinho, M. C. Delpech, and L. S. Alves, J. Appl. Polym. Sci., 80, 566 (2001). https://doi.org/10.1002/1097-4628(20010425)80:4<566::AID-APP1131>3.0.CO;2-H
  6. J. E. Lee and H. J. Kim, Polymer(Korea), 29, 172 (2005).
  7. Y. T. Shin, M. G. Hong, J. J. Choi, W. K. Lee, G. B. Lee, B. W. Yoo, M. G. Lee, and K. C. Song, "Preparation of Waterborne Polyurethane/Silica Nanocomposites Using Tetraethylorthosilicate," Ibid., 48(4), 428-433 (2010).
  8. Y. T. Shin, J. H. Hwang, M. G. Hong, J. J. Choi, W. K. Lee, G. B. Lee, B. W. Yoo, M. G. Lee, and K. C. Song, "Effect of Types of Silane Coupling Agents on the Properties of Waterborne Polyurethane," Ibid., 49(3), 285-291 (2011). https://doi.org/10.9713/kcer.2011.49.3.285
  9. J. S. Odinski and L. T. Manzione in "In Epoxy Resin Cemistry II" (R. S. Bauer Ed.), ACS symposium series, 221, American Chemical Society, Washington DC (1983).
  10. C. A. May, "Epoxy Resins : Chemistryand Technology", 2nd Ed, Marcel Dekker, New York (1988).
  11. S. M. Kim, Y. U. Kang, Y. K Yang, N. S. Kwak, J. S. Cho, J. W. Park, and T. S. Hwang, J. Korean Ind. Eng. Chem., 15, 537 (2004).
  12. S. H. Shin, Synthesis and properties of Polyurethane Dispersion containing Monomeric Diol (2010).
  13. K. H. Kim, K. J. Ha, J. P. Wu, H. S. Park, and K. S. Kwon, Korea J. Oil Fat Chem., 1, 29 (1998).
  14. D. J. Lee and H. D. Kim, J. Korean Fiber Soc., 36, 873 (1999).
  15. C. S. Sipaut, N. Ahmad, R. Adnann, I. Ab. Rahman, M. A. Bakar, J. Ismail, C. K. Chee, Properties and Morphology of Bulk Epoxy Composites Filled with Modified fumed silica-Epoxy nanocomposites, Journal of Applied Sciences, 7(1), 27-34 (2007). https://doi.org/10.3923/jas.2007.27.34
  16. T. K. Kwei, J. Appl. Polym. Sci., 27, 2891 (1982). https://doi.org/10.1002/app.1982.070270815
  17. C. G. Seefried, J. V. Koleske, and F. E. Critchfield, J. Appl. Polym. Sci., 19, 2493 (1975). https://doi.org/10.1002/app.1975.070190912
  18. S. K. Kim, Elastomer Vol., 35, No. 4, 281-287 (2000).
  19. F. Askari, M. Barikani, and M. Barmar, J. Appl. Polym. Sci., 130, 1743 (2013). https://doi.org/10.1002/app.39299
  20. J. B. Ahn, H. K. Cho, C. N. Jeong, and S. T. Nho, J. of Korean Ind. Eng. Chem., 8, 230 (1989).
  21. A. W. McLennaghan and R. A. Petherick, Eur. Polym. J., 24, 1063 (1988). https://doi.org/10.1016/0014-3057(88)90066-3
  22. J. C. Lee and B. K. Kim, Polymer, 19, 223 (1995).
  23. Xiao, H. X. Xiao, K. C. Frisch, and N. MAlwitz, J. Appl. Polym. Sci., 54, 1643 (1994). https://doi.org/10.1002/app.1994.070541107
  24. S. J. Park and F. L. Jin, "Thermal Stabilities and Dynamic Mechanical Properties of Sulfone-containing Epoxy Resin Cured with Anhydride", Polym. Degrad. Stab., 86, 515 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.06.003
  25. G. X. Xiao and M. E. R. Shanahan, "Water Absorption and Desorption in an Epoxy Resin with Degradation", J. Polym. Sci., Part B, Polym. Phys., 35, 2659 (1997). https://doi.org/10.1002/(SICI)1099-0488(19971130)35:16<2659::AID-POLB9>3.0.CO;2-K

Cited by

  1. Modification of Water-borne Polyurethane Using Benzophenone Crosslinker vol.27, pp.2, 2016, https://doi.org/10.14478/ace.2016.1013
  2. Adhesion Property of Low-Viscosity Polyurethane Hot-Melt Adhesive in according to the Deblocking Temperature and Content of Reactive Diluents vol.17, pp.2, 2016, https://doi.org/10.17702/jai.2016.17.2.67