• Title/Summary/Keyword: hydrolysis patterns

Search Result 76, Processing Time 0.024 seconds

Effect of Pretense (Subtilisin Carlsberg) on the Removal of Blood Protein Soil (I) -The Hydrolysis of Hemoglobin by Subtilisin Carlsberg- (Protease(Subtilisin Carlsberg)가 혈액 단백질 오구의 제거에 미치는 영향(I) -Subtilisin Carlsberg에 의한 헤모글로빈의 가수분해율-)

  • 이정숙;김성연
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.3
    • /
    • pp.550-559
    • /
    • 1996
  • The Effect of protease (subtilisin Carlsberg) on the removal of hemoglobin as protein soil was studied. The hydrolysis characteristics of subtilisin Carlsberg was examined by electrophoretic techniques. The fragmentation patterns of hemoglobin were analyzed by SDS-PAGE. The hydrolysis efficiency was evaluated by analysis of protein bands shown on gels before and after hydrolysis by using densitometer. 1. The hydrolysis of hemoglobin by subtilisin Carlsberg was increased markedly with the increase of the enzyme concentration. 2. The hydrolysis of hemoglobin by subtilisin Carlsberg was effectively increased in proportion to increasing of the hemoglobin concentration up to a certain point, but it began to decrease above the point. 3. The hydrolysis of hemoglobin by subtilisin Carlsberg followed the first order kinetics, yielding a rate constant of $4.05\time10^{-4}S^{-1}s$. 4. The hydrolysis of hemoglobin by subtilisin Carlsberg was highest at $50^{\circ}C$ and was decreased markedly at $80^{\circ}C$. 5. The hydrolysis of hemoglobin was comparatively low at pH 7.0~8.0, and highest at pH 11.0.

  • PDF

Effects of cultural conditions on growth of Micrococcus sp. and casein hydrolysis : (II) -Studies on patterns of casein hydrolysis with time during culture- (Micrococcus sp.의 생육 및 casein 분해에 미치는 배양조건의 영향 : (II) -배양시간에 따른 casein 분해 형태에 관한 연구-)

  • Lee, Si-Kyung;Pec, Un-Hua;Joo, Hyun-Kyu
    • Applied Biological Chemistry
    • /
    • v.35 no.6
    • /
    • pp.479-484
    • /
    • 1992
  • This study was undertaken to determine the effects of cultural conditions on cell growth and casein hydrolysis for cell production in order to add Micrococcus sp. LL3 as a potential agent for industrial application with aim of shortening ripening period and improving flavor. Optimum temperature for cell growth and caseinolysis was $30^{\circ}C$ and $37{\circ}C$, respectively, and optimum pH was 7.0. The enzyme remained stable up to $50^{\circ}C$. Hydrolysis patterns of casein were also observed on SDS-PAGE. Both ${\alpha}-casein$ and ${\beta}-casein$ were totally hydrolysed by enzymes from Micrococcus sp. LL3 during culture. A preferential attack on ${\beta}-casein$ was observed. Production of aminopeptidase which cleaved polypeptides was the highest in early stationary phase during cell growth.

  • PDF

Investigating the Efficiency of Formic Acid and Hydrochloric Acid in Weak Acid Hydrolysis for Myoglobin

  • Jihyun Paek;Hyojin Hwang;Yeoseon Kim;Dabin Lee;Jeongkwon Kim
    • Mass Spectrometry Letters
    • /
    • v.14 no.2
    • /
    • pp.48-55
    • /
    • 2023
  • This study compares the efficiency of weak acid hydrolysis (WAH) using formic acid (FA) and hydrochloric acid (HCl) in the analysis of myoglobin peptides. WAH using 2% and 5% formic acid resulted in the identification of 32 peptides, with varying degrees of cleavage at the C-terminus of aspartic acid residues. HCl WAH with different concentrations demonstrated an increase in the total number of identified peptides but a decrease in fully cleaved peptides as the HCl concentration increased. Notably, deamidation was observed during HCl WAH but not in FA WAH. The addition of HCl WAH after FA WAH provided a similar pattern to HCl WAH, with slightly higher levels of hydrolysis. These findings highlight distinct cleavage patterns and deamidation effects between FA and HCl in the context of WAH.

Effects of In Vitro Degradation on the Weight Loss and Tensile Properties of PLA/LPCL/HPCL Blend Fibers

  • Yoon Cheol Soo;Ji Dong Sun
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.13-18
    • /
    • 2005
  • PLA/LPCL/HPCL blend fibers composed of poly (lactic acid) (PLA), low molecular weight poly ($\varepsilon$-caprolactone) (LPCL), and high molecular weight poly ($\varepsilon$-caprolactone) (HPCL) were prepared by melt blending and spinning for bioab­sorbable filament sutures. The effects of blending time and blend composition on the X-ray diffraction patterns and tensile properties of PLA/LPCL/HPCL blend fibers were characterized by WAXD and UTM. In addition, the effect of in vitro degra­dation on the weight loss and tensile properties of the blend fibers hydrolyzed during immersion in a phosphate buffer solu­tion at pH 7.4 and 37$^{\circ}C$ for 1-8 weeks was investigated. The peak intensities of PLA/LPCL/HPCL blend fibers in X-ray diffraction patterns decreased with an increase of blending time and LPCL contents in the blend fibers. The weight loss of PLA/LPCL/HPCL blend fibers increased with an increase of blending time, LPCL contents, and hydrolysis time while the tensile strength and modulus of the blend fibers decreased. The tensile strength and modulus of the blend fibers were also found to be increased with an increase of HPCL contents in the blend fibers. The optimum conditions to prepare PLA/LPCL/HPCL blend fibers for bioabsorbable sutures are LPCL contents of $5 wt\%, HPCL contents of $35 wt\%, and blending time of 30 min. The strength retention of the PLA/LPCL/HPCL blend fiber prepared under optimum conditions was about $93.5\% even at hydrolysis time of 2 weeks.

Impact of Irradiation Time on the Hydrolysis of Waste Activated Sludge by the Dielectric Heating of Microwave

  • Byun, Imgyu;Lee, Jaeho;Lim, Jisung;Lee, Jeongmin;Park, Taejoo
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.83-89
    • /
    • 2014
  • The effects of initial solid concentration and microwave irradiation (MWI) time on the hydrolysis of waste activated sludge (WAS) were investigated. MWI time strongly influenced WAS hydrolysis for all initial solid concentrations of 8.20, 31.51, and 52.88 g VSS/L. For all WAS, the volatile suspended solids (VSS) solubilization degree ranged from 35.6% to 38.4% during a total MWI time of 10 min. Soluble chemical oxygen demand (SCOD) concentration increased at a rate proportional to the decrease of VSS during the MWI. However, the clearly different VSS solubilization patterns that were observed during the MWI were explained by the 2-step hydrolysis of WAS, consisting of the initial disintegration of the easily degradable part of the sludge, followed by the subsequent disintegration of the hardly degradable part of the sludge. WAS hydrolysis rates for 3 to 6 min of MWI were significantly lower than those for less than 3 min, or more than 6 min. From these results, 3 min MWI time and WAS of 31.51 g VSS/L (centrifugal thickener WAS) showed the most efficient hydrolysis of WAS at 36.0%. The profiles of total nitrogen (T-N) concentrations corresponded well to the SCOD increases in terms of the empirical formula of bacterial cell mass ($C_5H_7O_2N$). The negligible T-N increase and pH decrease during WAS hydrolysis by MWI will allow the application of this process to subsequent biological processes, such as anaerobic digestion.

Synthesis and Sintering of Cordierite from Metal Alkoxides(I) -Synthesis of Cordierite from Metal Alkoxides- (금속 Alkoxide로부터 Cordierite 분말의 합성 및 소결에 관한 연구(I) -금속 Alkoxide로부터 Cordierite분말의 합성-)

  • 한문희;박금철
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.5
    • /
    • pp.625-630
    • /
    • 1990
  • Cordierite powders were prepared from Si(OC2H5)4, Al(OC3H7i)3 and Mg(OC2H5)2 by the sol-gel method. Two different methods were applied for producing fine and homogeneous powders. One is that Si(OC2H5)4 with a lowr rate of hydrolysis was partially hydrolyzed and then Al(OC3H7i)3 and Mg(OC2H5)2 were mixed and reacted. The other is based on the simultaneous hydrolysis of these metal alkoxides using i-C4H9OH which retards the rate of hydrolysis of Al(OC3H7i)3 and Mg(OC2H5)2. It was confirmed that ifne and homogeneous powders were obtained from both methods. Also these powders were calcined at four different temperatures during two hours. X-ray diffraction patterns show only ${\mu}$-cordierite phase at 1000$^{\circ}C$, ${\mu}$-cordierite and ${\alpha}$-cordierite phases at 1100-1200$^{\circ}C$ and ${\alpha}$-cordierite phase at 1300$^{\circ}C$ respectively.

  • PDF

Biodegradation of Cotton/Polyester Blends (면/폴리에스터 혼방직물의 생분해성 평가)

  • Lee, Seung-Hyun;Park, Chung-Hee;Im, Seung-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.2
    • /
    • pp.347-355
    • /
    • 2005
  • Biodegradability of cotton/polyester blend fabric was investigated employing activated sluge test, soil burial test and enzyme hydrolysis. Surface changes of the degraded sample were observed through a microscopy. Changes in X-ray diffraction patterns and crystallinity were examined using X-ray diffractometer. Experimental results revealed that biodegradability of cotton/polyester blend fabric was proportional to the blending ratio of cotton, not showing any synergy effect. Polyester 100% hardly degraded in this study. Through the comparison of the experimental method it was shown that the biodegradabilities determined from activated sludge test and enzymatic hydrolysis except soil burial test were linearly related to the blending ratio of cotton in the blent fabrics. It is probably because the biodegradability determined from the retention of tensile strength of fabrics buried in soil was affected by the stress distribution of polyesters throughout the fabric. From the microscopic observations it was revealed that fungi were grown on the fabric surface and the colors turned yellow, brown and black. X-ray diffraction patterns showed that the heights of crystalline peak coming from cotton part in blend fabrics decreased whereas those coming from polyester part increased comperatively as time passed by. Crystallinities of cotton 100% fabric increased slightly at the begining and then decreased continuously.

Antioxidative Activities of Hydrolysates from Duck Egg White Using Enzymatic Hydrolysis

  • Chen, Yi-Chao;Chang, Hsi-Shan;Wang, Cheng-Taung;Cheng, Fu-Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1587-1593
    • /
    • 2009
  • Duck egg white (DEW) hydrolysates were prepared by five enzymes (papain, trypsin, chymotrypsin, alcalase, and flavourzyme) and their antioxidant activities investigated in this study. DEW hydrolyzed with papain (DEWHP) had the highest peptide content among the five enzymatic treatments. Besides, the peptide content of DEWHP increased when the enzyme to substrate ratio (E/S ratio) increased. It was suggested that higher E/S ratio contributed to elevate the degree of hydrolysis of DEW effectively. Similar results were also obtained by Tricine-SDS-PAGE. In addition, SDS-PAGE patterns indicated papain was the only one amongst all enzymes with the ability to hydrolyze DEW. In antioxidant properties, DEWHP showed more than 70% of inhibitory activity on linoleic acid peroxidation and superoxide anion scavenging. Moreover, the $Fe^{2+}$ chelating effect of DEWHP was greater than 90%, while no significant difference was observed in DPPH radical scavenging and reducing ability. The results of peptide contents, antioxidant activities and electrophoresis suggested that the higher the peptide content, the stronger the antioxidant activities in DEWHP.

Physicochemical Properties of Gamma-Irradiated Corn Starch

  • Lee, Yong-Jin;Kim, Sun-Young;Lim, Seung-Taik;Han, Sag-Myung;Kim, Hye-Mi;Kang, Il-Jun
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.2
    • /
    • pp.146-154
    • /
    • 2006
  • Structural modification of corn starch by gamma irradiation was evaluated for under dry conditions at varied intensities from 0 to 40 kGy. Under scanning electron microscopy, the granule shape of corn starch was not significantly affected by the irradiation up to 40 kGy. In addition, X-ray diffraction and melting patterns of the irradiated starches were similar to those of the native starch, indicating that crystalline regions in the starch granules were not changed by irradiation. However, the pattern of gel permeation column chromatography showed a significant increase in partial hydrolysis of gamma irradiated starch samples. The degree of polymerization and the paste viscosity of irradiated starch samples dose-dependently decreased significantly with irradiation, and increased solubility and clarity were observed in the irradiated starch solution. In addition, the degree of retrogradation decreased as irradiation dose increased. Irradiation of corn starch has advantages over the ordinary acid or the enzyme hydrolysis modification methods. It does not affect the granular shape and crystalline phase of starch during hydrolysis, and the process can be carried out in dry state.

Characterization of $SiO_2-P_2O_5-B_2O_3$ Glass Soot fabricated by Flame Hydrolysis Deposition (화염 가수분해 증착에 의해 형성된 $SiO_2-P_2O_5-B_2O_3$ 유리 미립자의 특성)

  • 최춘기;정명영;최태구
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.811-816
    • /
    • 1997
  • SiO2-P2O5-B2O3 glass soot was fabricated by flame hydrolysis deposition and their properties by SEM, XRD, TGA-DSC were investigated., The mechanism of consolidation process of a glass soot as a function of consolidation temperature was analyzed by SEM observations. In the XRD patterns, the crystalline peaks which seem to be generated from B2O3 and BPO4 were observed. When the temperature of heat treatment exceeded 105$0^{\circ}C$, the non-crystalline state of SiO2-P2O5-B2O3 glass was observed. In the TGA-DSC curves, the evaporation of water molecule by a sudden endothermic reaction was observed at 128$^{\circ}C$ and a broad endothermic peak was seen in the temperature range of 40$0^{\circ}C$-95$0^{\circ}C$, without any weight loss. Finally, this peak was began to recover its baseline at 953$^{\circ}C$. This point is equal to the temperature at which the densification begins. Furthermore, we observed that the addition of dopants such as P2O5 and B2O3 decrease the onset of consolidation temperature till 95$0^{\circ}C$.

  • PDF