References
- Korea Ministry of Environment. White paper of environment 2012. Sejong: Ministry of Environment; 2013.
- Neyens E, Baeyens J. A review of thermal sludge pre-treatment processes to improve dewaterability. J. Hazard. Mater. 2003;98:51-67. https://doi.org/10.1016/S0304-3894(02)00320-5
- Appels L, Baeyens J, Degreve J, Dewil R. Principles and potential of anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008;34:755-781. https://doi.org/10.1016/j.pecs.2008.06.002
- Flemming HC, Wingender J. Relevance of microbial extracellular polymeric substances (EPSs): Part I. Structural and ecological aspects. Water Sci. Technol. 2001;43:1-8.
- Vavilin VA, Lokshina LY. Modeling of volatile fatty acids degradation kinetics and evaluation of microorganism activity. Bioresour. Technol. 1996;57:69-80. https://doi.org/10.1016/0960-8524(96)00052-1
- Chang CJ, Tyagi VK, Lo SL. Effects of microwave and alkali induced pretreatment on sludge solubilization and subsequent aerobic digestion. Bioresour. Technol. 2011;102:7633-7640. https://doi.org/10.1016/j.biortech.2011.05.031
- O'Flaherty V, Collins G, Mahony T. The microbiology and biochemistry of anaerobic bioreactors with relevance to domestic sewage treatment. Rev. Environ. Sci. Biotechnol. 2006;5:39-55. https://doi.org/10.1007/s11157-005-5478-8
- Lin JG, Chang CN, Chang SC. Enhancement of anaerobic digestion of waste activated sludge by alkaline solubilization. Bioresour. Technol. 2007;62:85-90.
- Tanaka S, Kobayashi T, Kamiyama K, Signey Bildan ML. Effects of thermochemical pretreatment on the anaerobic digestion of waste activated sludge. Water Sci. Technol. 1997;35:209-215. https://doi.org/10.1016/S0273-1223(97)88229-7
- Weemaes M, Grootaerd H, Simons F, Verstraete W. Anaerobic digestion of ozonized biosolids. Water Res. 2000;34:2330-2336. https://doi.org/10.1016/S0043-1354(99)00373-5
- Pham TT, Brar SK, Tyagi RD, Surampalli RY. Ultrasonication of wastewater sludge: consequences on biodegradability and flowability. J. Hazard. Mater. 2009;163:891-898. https://doi.org/10.1016/j.jhazmat.2008.07.091
- Weemaes MP, Verstraete WH. Evaluation of current wet sludge disintegration techniques. J. Chem. Technol. Biotechnol. 1998;73:83-92. https://doi.org/10.1002/(SICI)1097-4660(1998100)73:2<83::AID-JCTB932>3.0.CO;2-2
- Tyagi VK, Lo SL. Enhancement in mesophilic aerobic digestion of waste activated sludge by chemically assisted thermal pretreatment method. Bioresour. Technol. 2012;119:105-113. https://doi.org/10.1016/j.biortech.2012.05.134
- Tian Y, Zuo W, Ren Z, Chen D. Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety. Bioresour. Technol. 2011;102:2053-2061. https://doi.org/10.1016/j.biortech.2010.09.082
- Adnadjevic BK, Jovanovic JD. A comparative kinetics study on the isothermal heterogeneous acid-catalyzed hydrolysis of sucrose under conventional and microwave heating. J. Mol. Catal. A Chem. 2012;356:70-77. https://doi.org/10.1016/j.molcata.2011.12.027
- Mazo P, Rios L, Estenoz D, Sponton M. Self-esterification of partially maleated castor oil using conventional and microwave heating. Chem. Eng. J. 2012;185:347-351.
- Shibata C, Kashima T, Ohuchi K. Nonthermal influence of microwave power on chemical reactions. Jpn. J. Appl. Phys. 1996;35:316-319. https://doi.org/10.1143/JJAP.35.316
- Wojciechowska E. Application of microwaves for sewage sludge conditioning. Water Res. 2005;39:4749-4754. https://doi.org/10.1016/j.watres.2005.09.032
- Eskicioglu C, Kennedy KJ, Droste RL. Characterization of soluble organic matter of waste activated sludge before and after thermal pretreatment. Water Res. 2006;40:3725-3736. https://doi.org/10.1016/j.watres.2006.08.017
- Hong SM, Park JK, Lee YO. Mechanisms of microwave irradiation involved in the destruction of fecal coliforms from biosolids. Water Res. 2004;38:1615-1625. https://doi.org/10.1016/j.watres.2003.12.011
- Solyom K, Mato RB, Perez-Elvira SI, Cocero MJ. The influence of the energy absorbed from microwave pretreatment on biogas production from secondary wastewater sludge. Bioresour. Technol. 2011;102:10849-10854. https://doi.org/10.1016/j.biortech.2011.09.052
- Woo IS, Rhee IK, Park HD. Differential damage in bacterial cells by microwave radiation on the basis of cell wall structure. Appl. Environ. Microbiol. 2000;66:2243-2247. https://doi.org/10.1128/AEM.66.5.2243-2247.2000
- Stuerga DA, Gaillard P. Microwave athermal effects in chemistry: a myth's autopsy. Part II. Orienting effects and thermodynamic consequences of electric field. J. Microw. Power Electromagn. Energy 1996;31:101-113. https://doi.org/10.1080/08327823.1996.11688300
- Imbierowicz M, Chacuk A. Kinetic model of excess activated sludge thermohydrolysis. Water Res. 2012;46:5747-5755. https://doi.org/10.1016/j.watres.2012.07.051
- Collin RE. Foundations for microwave engineering. 2nd ed. New York: McGraw-Hill; 1992.
- Ahn JH, Shin SG, Hwang S. Effect of microwave irradiation on the disintegration and acidogenesis of municipal secondary sludge. Chem. Eng. J. 2009;153:145-150. https://doi.org/10.1016/j.cej.2009.06.032
- Uma Rani R, Adish Kumar S, Kaliappan S, Yeom I, Rajesh Banu J. Impacts of microwave pretreatments on the semicontinuous anaerobic digestion of dairy waste activated sludge. Waste Manag. 2013;33:1119-1127. https://doi.org/10.1016/j.wasman.2013.01.016
- Eskicioglu C, Prorot A, Marin J, Droste RL, Kennedy KJ. Synergetic pretreatment of sewage sludge by microwave irradiation in presence of H2O2 for enhanced anaerobic digestion. Water Res. 2008;42:4674-4682. https://doi.org/10.1016/j.watres.2008.08.010
- Park WJ, Ahn JH, Hwang S, Lee CK. Effect of output power, target temperature, and solid concentration on the solubilization of waste activated sludge using microwave irradiation. Bioresour. Technol. 2010;101 Suppl 1:S13-6. https://doi.org/10.1016/j.biortech.2009.02.062
- Yu Q, Lei H, Li Z, et al. Physical and chemical properties of waste-activated sludge after microwave treatment. Water Res. 2010;44:2841-2849. https://doi.org/10.1016/j.watres.2009.11.057
- Cho SK, Shin HS, Kim DH. Waste activated sludge hydrolysis during ultrasonication: two-step disintegration. Bioresour. Technol. 2012;121:480-483. https://doi.org/10.1016/j.biortech.2012.07.024
- Jones DA, Lelyveld TP, Mavrofidis SD, Kingman SW, Miles NJ. Microwave heating applications in environmental engineering: a review. Resour. Conserv. Recycl. 2002;34:75-90. https://doi.org/10.1016/S0921-3449(01)00088-X
- Eaton AD, Clesceri LS, Rice EW, Greenberg AE. Standard methods for the examination of water and wastewater. 21st ed. Washington: American Public Health Association; 2005.
- Eskicioglu C, Kennedy KJ, Droste RL. Enhancement of batch waste activated sludge digestion by microwave pretreatment. Water Environ. Res. 2007;79:2304-2317. https://doi.org/10.2175/106143007X184069
- Park WJ, Ahn JH, Lee CK. Effect of temperature-increase rate and terminal temperature on the solubilization of sewage sludge using microwave irradiation. Environ. Eng. Res. 2009;14:48-52. https://doi.org/10.4491/eer.2009.14.1.048
- Melbinger NR, Donnellon J, Zablatzky HR. Toxic effect of ammonia nitrogen in high rate digestion. J. Water Pollut. Control Fed. 1971;43:1658-1670.
- Yenigun O, Demirel B. Ammonia inhibition in anaerobic digestion: a review. Process Biochem. 2013;48:901-911. https://doi.org/10.1016/j.procbio.2013.04.012
Cited by
- The Effect of Strong Acid and Ionic Material Addition in the Microwave-assisted Solubilization of Waste Activated Sludge vol.37, pp.1, 2015, https://doi.org/10.4491/KSEE.2015.37.1.60
- A Study of Full Scale PUV/US Hybrid System for Contaminant Treatment in Groundwater vol.39, pp.10, 2017, https://doi.org/10.4491/KSEE.2017.39.10.575
- Energy efficient sludge solubilization by microwave irradiation under carbon nanotube (CNT)-coated condition vol.259, pp.None, 2020, https://doi.org/10.1016/j.jenvman.2020.110089