• Title/Summary/Keyword: hydrological data

Search Result 926, Processing Time 0.024 seconds

Evaluation of flood frequency analysis technique using measured actual discharge data (실측유량 자료를 활용한 홍수량 빈도해석 기법 평가)

  • Kim, Tae-Jeong;Kim, Jang-Gyeong;Song, Jae-Hyun;Kim, Jin-Guk;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.5
    • /
    • pp.333-343
    • /
    • 2022
  • For water resource management, the design flood is calculated using the flood frequency analysis technique and the rainfall runoff model. The method by design flood frequency analysis calculates the stochastic design flood by directly analyzing the actual discharge data and is theoretically evaluated as the most accurate method. Actual discharge data frequency analysis of the measured flow was limited due to data limitations in the existing flood flow analysis. In this study, design flood frequency analysis was performed using the measured flow data stably secured through the water level-discharge relationship curve formula. For the frequency analysis of design flood, the parameters were calculated by applying the bayesian inference, and the uncertainty of flood volume by frequency was quantified. It was confirmed that the result of calculating the design flood was close to that calculated by the rainfall-runoff model by applying long-term rainfall data. It is judged that hydrological analysis can be done from various perspectives by using long-term actual flow data through hydrological survey.

Utilizing deep learning algorithm and high-resolution precipitation product to predict water level variability (고해상도 강우자료와 딥러닝 알고리즘을 활용한 수위 변동성 예측)

  • Han, Heechan;Kang, Narae;Yoon, Jungsoo;Hwang, Seokhwan
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.7
    • /
    • pp.471-479
    • /
    • 2024
  • Flood damage is becoming more serious due to the heavy rainfall caused by climate change. Physically based hydrological models have been utilized to predict stream water level variability and provide flood forecasting. Recently, hydrological simulations using machine learning and deep learning algorithms based on nonlinear relationships between hydrological data have been getting attention. In this study, the Long Short-Term Memory (LSTM) algorithm is used to predict the water level of the Seomjin River watershed. In addition, Climate Prediction Center morphing method (CMORPH)-based gridded precipitation data is applied as input data for the algorithm to overcome for the limitations of ground data. The water level prediction results of the LSTM algorithm coupling with the CMORPH data showed that the mean CC was 0.98, RMSE was 0.07 m, and NSE was 0.97. It is expected that deep learning and remote data can be used together to overcome for the shortcomings of ground observation data and to obtain reliable prediction results.

Study on Flood Prediction System Based on Radar Rainfall Data (레이더 강우자료에 의한 홍수 예보 시스템 연구)

  • Kim, Won-Il;Oh, Kyoung-Doo;Ahn, Won-Sik;Jun, Byong-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.11
    • /
    • pp.1153-1162
    • /
    • 2008
  • The use of radar rainfall for hydrological appraisal has been a challenge due to the limitations in raw data generation followed by the complex analysis needed to come up with precise data interpretation. In this study, RAIDOM (RAdar Image DigitalizatiOn Method) has been developed to convert synthetic radar CAPPI(Constant Altitude Plan Position Indicator) image data from Korea Meteorological Administration into digital format in order to come up with a more practical and useful radar image data. RAIDOM was used to examine a severe local rainstorm that occurred in July 2006 as well as two other separate events that caused heavy floods on both upper and mid parts of the HanRiver basin. A distributed model was developed based on the available radar rainfall data. The Flood Hydrograph simulation has been found consistent with actual values. The results show the potentials of RAIDOM and the distributed model as tools for flood prediction. Furthermore, these findings are expected to extend the usefulness of radar rainfall data in hydrological appraisal.

Quantifying the 2022 Extreme Drought Using Global Grid-Based Satellite Rainfall Products (전지구 강수관측위성 기반 격자형 강우자료를 활용한 2022년 국내 가뭄 분석)

  • Mun, Young-Sik;Nam, Won-Ho;Jeon, Min-Gi;Lee, Kwang-Ya;Do, Jong-Won;Isaya Kisekka
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.41-50
    • /
    • 2024
  • Precipitation is an important component of the hydrological cycle and a key input parameter for many applications in hydrology, climatology, meteorology, and weather forecasting research. Grid-based satellite rainfall products with wide spatial coverage and easy accessibility are well recognized as a supplement to ground-based observations for various hydrological applications. The error properties of satellite rainfall products vary as a function of rainfall intensity, climate region, altitude, and land surface conditions. Therefore, this study aims to evaluate the commonly used new global grid-based satellite rainfall product, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), using data collected at different spatial and temporal scales. Additionally, in this study, grid-based CHIRPS satellite precipitation data were used to evaluate the 2022 extreme drought. CHIRPS provides high-resolution precipitation data at 5 km and offers reliable global data through the correction of ground-based observations. A frequency analysis was performed to determine the precipitation deficit in 2022. As a result of comparing droughts in 2015, 2017, and 2022, it was found that May 2022 had a drought frequency of more than 500 years. The 1-month SPI in May 2022 indicated a severe drought with an average value of -1.8, while the 3-month SPI showed a moderate drought with an average value of 0.6. The extreme drought experienced in South Korea in 2022 was evident in the 1-month SPI. Both CHIRPS precipitation data and observations from weather stations depicted similar trends. Based on these results, it is concluded that CHIRPS can be used as fundamental data for drought evaluation and monitoring in unmeasured areas of precipitation.

Assessment of Degree of Naturalness of Vegetation on the Riverine Wetland (하천습지의 식생학적 자연도 평가)

  • Chun, Seung-Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • This study was carried out to suggest the baseline data necessary for vegetation restoration at riverine wetland within stream corridor. We used the prevalence index for wetland assessment by applying the method of weighted averages with index values based on five hydrophyte indicator status as defined by estimated probability occurred in wetland. We selected near nature and urbanized reach of Gap and Yanghwa streams as experimental site. Although two sites have some different disturbance and characteristics of watershed, they showed that similarity of vegetation community including three dominant species - Salix koreensis, Phragmites communis, Miscanthus sacchariflorus - was very high. But in case of Yanghwa stream, various kinds of emergent plants along wetted condition were distinctly occurred, resulted from difference of hydrological regime and substrate, etc. Degree of naturalness of vegetation at the sampled areas indicated that near nature area of Gap stream and all area of Yanghwa stream were fitted as riverine wetland, while urbanized area of Gap stream has changed into upland condition. In conclusion assessment system using prevalence index would be considered an effective method for evaluating of natural states of riverine wetland, but further integrated consideration of physical, hydrological, and biological factors of stream process, and also with considering the difference between those qualitative data of vegetation community.

Operational Hydrological Forecast for the Nakdong River Basin Using HSPF Watershed Model (HSPF 유역모델을 이용한 낙동강유역 실시간 수문 유출 예측)

  • Shin, Changmin;Na, Eunye;Lee, Eunjeong;Kim, Dukgil;Min, Joong-Hyuk
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.212-222
    • /
    • 2013
  • A watershed model was constructed using Hydrological Simulation Program Fortran to quantitatively predict the stream flows at major tributaries of Nakdong River basin, Korea. The entire basin was divided into 32 segments to effectively account for spatial variations in meteorological data and land segment parameter values of each tributary. The model was calibrated at ten tributaries including main stream of the river for a three-year period (2008 to 2010). The deviation values (Dv) of runoff volumes for operational stream flow forecasting for a six month period (2012.1.2 to 2012.6.29) at the ten tributaries ranged from -38.1 to 23.6%, which is on average 7.8% higher than those of runoff volumes for model calibration (-12.5 to 8.2%). The increased prediction errors were mainly from the uncertainties of numerical weather prediction modeling; nevertheless the stream flow forecasting results presented in this study were in a good agreement with the measured data.

Automatic Calibration of Stream Flow and Nutrients Loads Using HSPF-PEST at the Bochung A Watershed (보청A유역 유량 및 영양물질 자동보정을 위한 HSPF-PEST 연계적용)

  • Jeon, Ji-Hong;Choi, Dong-Hyuk;Lim, Kyung-Jae;Kim, Tae-Dong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.77-86
    • /
    • 2010
  • Hydrologic Simulation Program-Fortran (HSPF) coupled with PEST which is optimization program was calibrated and validated at Bochung watershed by using monitoring data of water quantities and nutrient loading. Although the calibrated data were limited, model parameters of each land use type were optimized and coefficient of determinations were ranged from 0.94 to 0.99 for runoff, from 0.89 to 1.00 for TN loading, and from 0.92 to 1.00 for TP loading. The optimized hydrological parameters indicated that the forested land could retain rainfall within soil layer with high soil layer depth and infiltration rate compared with other land use type. Hydrological characteristics of paddy rice field are low infiltration rate and coefficient of roughness. The calibrated parameters related to nutrient loading indicated generation of nutrient pollution from agricultural area including upland and paddy rice field higher than other land use type resulting from fertilizer application. Overall PEST program is useful tool to calibrate HSPF automatically without consuming time and efforts.

Assessment of MODIS Leaf Area Index (LAI) Influence on the Penman-Monteith Evapotranspiration Estimation of SLURP Model (MODIS 위성영상으로부터 추출된 엽면적지수(LAI)가 SLURP 모형의 Penman-Monteith 증발산량 추정에 미치는 영향 평가)

  • Ha, Rim;Shin, Hyung-Jin;Hong, Woo-Yong;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1087-1091
    • /
    • 2008
  • Evapotranspiration (ET) is an important factor while simulating daily streamflow in hydrological models. The LAI (Leaf Area Index) value reflecting the conditions of vegetation generally affects considerably in the estimation of ET, for example, when using FAO Penman Monteith equation. Recently in evaluating the vegetation condition as a fixed quantity, the remotely sensed LAIs from MODIS satellite data are avaliable, and the time series values of spatial LAI coupled with land use classes are utilized for ET evaluation. The 4 years (2001-2004) MODIS LAI data were prepared for the evaluation of continuous hydrological model, SLURP (Semi-distributed Land Use-based Runoff Processes). The model was applied for simulating the dam inflow of Chungjudam watershed ($6661.58\;km^2$) located in the upstream of Han river basin of South Korea. From the model results, the FAO Penman Monteith ET was affected by the MODIS LAIs. Especially for the ET of deciduous forest, the Total ET was 33.9 % lager than coniferous forest for the 3.8 % lager of LAI. The watershed average LAI caused a 7.0 % decrease in average soil moisture of the watershed and 14.3 % decrease of ground water recharge.

  • PDF