• Title/Summary/Keyword: hydrological data

Search Result 916, Processing Time 0.033 seconds

Improving streamflow prediction with assimilating the SMAP soil moisture data in WRF-Hydro

  • Kim, Yeri;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.205-205
    • /
    • 2021
  • Surface soil moisture, which governs the partitioning of precipitation into infiltration and runoff, plays an important role in the hydrological cycle. The assimilation of satellite soil moisture retrievals into a land surface model or hydrological model has been shown to improve the predictive skill of hydrological variables. This study aims to improve streamflow prediction with Weather Research and Forecasting model-Hydrological modeling system (WRF-Hydro) by assimilating Soil Moisture Active and Passive (SMAP) data at 3 km and analyze its impacts on hydrological components. We applied Cumulative Distribution Function (CDF) technique to remove the bias of SMAP data and assimilate SMAP data (April to July 2015-2019) into WRF-Hydro by using an Ensemble Kalman Filter (EnKF) with a total 12 ensembles. Daily inflow and soil moisture estimates of major dams (Soyanggang, Chungju, Sumjin dam) of South Korea were evaluated. We investigated how hydrologic variables such as runoff, evaporation and soil moisture were better simulated with the data assimilation than without the data assimilation. The result shows that the correlation coefficient of topsoil moisture can be improved, however a change of dam inflow was not outstanding. It may attribute to the fact that soil moisture memory and the respective memory of runoff play on different time scales. These findings demonstrate that the assimilation of satellite soil moisture retrievals can improve the predictive skill of hydrological variables for a better understanding of the water cycle.

  • PDF

Study on the Cheonggyecheon through the hydrological monitoring and GIS (수문관측 및 GIS를 이용한 청계천 모니터링 연구)

  • Jeong, Chang-Sam;Bae, Deg-Hyo;Kim, Mun-Mo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1464-1468
    • /
    • 2007
  • The restoration project of Cheonggyecheon was conducted to creates the refreshing water-friendly environment in the downtown Seoul. It already have passed almost 2 years after restoration. This project changed environment of Cheonggyecheon dramatically, so historic hydrological data became useless. There are not so many hydrological data to manage and control this newly restored urban stream. The main purpose of this study is collecting and analysing the hydrological data of Cheonggyecheon. At first, we analysed the mechanism of Cheonggyecheon discharge using the sewage design maps and some GIS data. We also monitored the water levels and discharges of 5 main points of Cheonggyecheon. Rating curves of these 5 points were derived. There were 249 blocks of water gates which were located at both sides of bank. We also monitored the behaviors of these water gates. Through the these monitorings, some equations were derived to give useful information to the manager of Cheonggyecheon.

  • PDF

Development of Monthly Hydrological Cycle Assessment System Using Dynamic Water Balance Model Based on Budyko Framework (Budyko 프레임워크 기반 동적 물수지 모형을 활용한 월 단위 물순환 평가체계 개발)

  • Kim, Kyeung;Hwang, Soonho;Jun, Sang-Min;Lee, Hyunji;Kim, Sinae;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.71-83
    • /
    • 2022
  • In this study, an indicator and assessment system for evaluating the monthly hydrological cycle was prepared using simple factors such as the landuse status of the watershed and topographic characteristics to the dynamic water balance model (DWBM) based on the Budyko framework. The parameters a1 of DWBM are introduced as hydrologic cycle indicators. An indicator estimation regression model was developed using watershed characteristics data for the introduced indicator, and an assessment system was prepared through K-means cluster analysis. The hydrological cycle assessment system developed in this study can assess the hydrological cycle with simple data such as land use, CN, and watershed slope, so it can quickly assess changes in hydrological cycle factors in the past and present. Because of this advantage is expected that the developed assessment system can predict changes in the hydrological cycle and use an auxiliary tool for policymaking.

A Study on Hydrological Information Management by using Geo-Spatial Information System (지형공간정보체계를 이용한 수문정보관리에 관한 연구)

  • 유복모;장지원;한순석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 1994
  • This study aims to develop a hydrological information management system to manage the hydrological data of Han river integratedly. Various data related to hydrology such as water level, dams, the positions of the hydrological structures for Han river were collected and inputed to build the hydrological information management system. The Database Management System(DBMS) of Korea Water Resources Cooperation which is operated in the form of digits and characters was linked to the Geo-Spatial Information System to join positional information and digital information and to analyze the hydrological data using graphical techniques. Through this study, the positional errors which occurred when digital or characteristic informations were only used, were detected. And the hydrological information management system was presented to estimate the reliability of data related to water level among the hydrological information and to show the basis of output used to correct the data.

  • PDF

Uncertainty Analysis of Hyung San River Discharge due to the methods of Discharge Measurement (유량측정방법에 따른 형산강유량의 불확실도 분석)

  • Seo, Kyu-Woo;Kim, Su-Hyun;Kim, Dai-Gon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1538-1542
    • /
    • 2005
  • This study is to secure more accurate data of the discharge on the measurement by gaining a reliable hydrological data through the comparison the present method of measuring them and the other way that is based ISO. This study suggests the applicable measurement method of the discharge that has reliance through general elements and the analysis of uncertainty by comparing and assaying the data of the Hyung San River that is measured by the present standard. The result of this study makes us realize that we should complement the measurement method of the discharge securing the reliable and accurate hydrological data Hydrological data is very important things to perform domestic river works or install some structure in river or coast. Securing reliable and accurate hydro-data and making a thesis should go on in other to do any construction in river or coast.

  • PDF

Hydrological observation system deployment for water Water quantity, quality management (수자원 수량, 수질관리를 위한 수문관측시스템 구축방안)

  • Yu, Se-hwan;Jang, Dong-bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.882-885
    • /
    • 2014
  • The duration and frequency of flooding and not last long, by the time climate change drought. The increased accordingly by reducing stream flow and year variation. This trend is expected to continue, and change towards a comprehensive analysis of such quantity, quality and management of water resources are managed. Flood warning system is called to perform them electronically to the management of water resources such as these to be in the organic water-related basic data acquisition, storage, processing and utilization. Can be divided into hydrological observations and flood warning systems alert system broadcast system. Hydrological observation system is the measurement from the hydrological stations (water level, rainfall, water) that can be observed hydrological status of the dam basin hydrological observation data transmitted to the central office, located at the dam monitoring and control system through a variety of networks including satellite, and the collected defined as the system that sent the K-water head office in 1 minute increments hydrological observation data. Headquartered in support of this decision. Dimensions of the dam are provided in addition to inward. Channeled through various hydrologic analysis and leveraging the data transfer. This paper looks at ways to build out hydrological observation system.

  • PDF

Evaluation of Hydrological Impacts Caused by Land Use Change (토지이용변화에 따른 수문영향분석)

  • Park, Jin-Yong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.54-66
    • /
    • 2002
  • A grid-based hydrological model, CELTHYM, capable of estimating base flow and surface runoff using only readily available data, was used to assess hydrologic impacts caused by land use change on Little Eagle Creek (LEC) in Central Indiana. Using time periods when land use data are available, the model was calibrated with two years of observed stream flow data, 1983-1984, and verified by comparison of model predictions with observed stream flow data for 1972-1974 and 1990-1992. Stream flow data were separated into direct runoff and base flow using HYSEP (USGS) to estimate the impacts of urbanization on each hydrologic component. Analysis of the ratio between direct runoff and total runoff from simulation results, and the change in these ratios with land use change, shows that the ratio of direct runoff increases proportionally with increasing urban area. The ratio of direct runoff also varies with annual rainfall, with dry year ratios larger than those for wet years shows that urbanization might be more harmful during dry years than abundant rainfall years in terms of water yield and water quality management.

Analysis of Statistical Characteristics of Annual Precipitation in Korea Using Data Screeening Technique (데이터 스크린 기법을 이용한 연강수량의 통계적 특성 분석)

  • Jeung, Se-Jin;Lim, Ga-Kyun;Kim, Byung-Sik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.3
    • /
    • pp.15-28
    • /
    • 2020
  • Hydrological data is very important in understanding the hydrological process and identifying its characteristics to protect human life and property from natural disasters. In particular, hydrological analysis are often performed assuming that hydrological data are stationary. However, recently climate change has raised the issue of climate stationary, and it is necessary to analyze the nonstationary of the climate. In this study, a method to analyze the stationarity of hydrological data was examined using the annual precipitation of 37 meteorological stations with long - term record data. Therefore, in this study, the stationary was determined by analyzing the persistence, trend, and stability using annual precipitation. Overall results showed that a trend was observed in 4 out of 37 stations, stable was investigated at 15 stations, and persistence was shown at 4 stations. In the stationary analysis using the annual precipitation data, 25 stations (67% of 37 stations) were nonstationary.

Development of a distributed hydrological model considering hydrological change

  • Kim, Deasik;An, Hyunuk;Jang, Minwon;Kim, Seongjoon
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.521-532
    • /
    • 2018
  • In recent decades, the dry stream phenomena of small and medium sized rivers have been attracting much attention as an important social problem. To prevent dry stream phenomena, it is necessary to build an infrastructure that manages rivers. To accurately determine the progress of dry stream phenomena, it is necessary to continuously measure the discharge and other hydrological factors for small and medium sized rivers. However, until now, the flow data for small and medium rivers in Korea has been insufficient. To overcome the lack of supporting data for supporting rational decision-making in policy and project implementation, a short- and long-term hydrological model was developed that takes into consideration hydrological changes such as the increase of the impervious area due to urban development and groundwater pumping, the construction of a large-scale sewage treatment plant, the maintenance of stream-oriented rivers, etc. In the developed model, the distributed grid is represented by three layers: Surface flow, interflow, and groundwater flow. The surface flow and intermediate flow flowed along the flow direction, and the groundwater flow was calculated by a two-dimensional groundwater analysis model such that the outflow occurred in all directions without a specific flow direction. The effects of land use and cover on evapotranspiration and infiltration and the effects of multiple landscapes can be simulated in the developed model.

Implementation of ICT-based Real-time Hydrological Data Acquisition and Processing System for Scientific Water Management (과학적 물관리를 위한 ICT기반 실시간 수문정보시스템 구현)

  • Jang, Sung-Won;Jeong, Chang-wook;Jo, Kyoung-Hoon;Shin, Ji-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.303-305
    • /
    • 2022
  • In Korea, due to the geographical and hydrological characteristics of the country, the water cycle has a large variation throughout the year. Therefore, in order to quickly identify and prepare for hydrological phenomena such as floods and droughts, the need for scientific water management incorporating the latest ICT technologies is growing. Accordingly, K-water operates a real-time Hydrological Data Acquisition and Processing System (HDAPS) that can check the situation of the site more intuitionally by linking the hydrological data collected in real time through satellite, GIS, and CCTV. and prepared for flood and drought. In this paper, we will introduce K-water's real-time hydrological information system and consider its application to protect people's lives and property.

  • PDF