• Title/Summary/Keyword: hydrological characteristics

Search Result 476, Processing Time 0.028 seconds

Analysis of Bed Changes of the Nakdong River with Opening the Weir Gate (낙동강 보 개방에 따른 하상변동 분석)

  • Kim, Seong-Jun;Kim, Chang-Sung
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.353-365
    • /
    • 2020
  • In this study, the characteristics of bed elevation changes of the Nakdong River when weir gates are opened were analyzed using the Hydrologic Engineering Center-River Analysis System (HEC-RAS). The study area was 292.37 km downstream of the Gudam Bridge to the Nakdong estuary of the Nakdong River. The HEC-RAS program, which is a 1D numerical analysis model, was used to simulate bed elevation changes. Simulations were conducted under two scenarios from 2017 to 2019. Scenarios 1 and 2 were devised under the conditions of a fully opened gate and during gate installation, respectively. Results confirmed that, under the conditions of Scenario 1, deposition occurred in most sections from the Hapcheon-Changnyeong weir to the Changnyeong-Haman weir (a distance of approximately 40 km). In addition, it was predicted that the flow that included sediments in the main stream of the Nakdong River was not interrupted by the weir structure and regularly produced changes in the river bed.

Optimizing Hydrological Quantitative Precipitation Forecast (HQPF) based on Machine Learning for Rainfall Impact Forecasting (호우 영향예보를 위한 머신러닝 기반의 수문학적 정량강우예측(HQPF) 최적화 방안)

  • Lee, Han-Su;Jee, Yongkeun;Lee, Young-Mi;Kim, Byung-Sik
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1053-1065
    • /
    • 2021
  • In this study, the prediction technology of Hydrological Quantitative Precipitation Forecast (HQPF) was improved by optimizing the weather predictors used as input data for machine learning. Results comparison was conducted using bias and Root Mean Square Error (RMSE), which are predictive accuracy verification indicators, based on the heavy rain case on August 21, 2021. By comparing the rainfall simulated using the improved HQPF and the observed accumulated rainfall, it was revealed that all HQPFs (conventional HQPF and improved HQPF 1 and HQPF 2) showed a decrease in rainfall as the lead time increased for the entire grid region. Hence, the difference from the observed rainfall increased. In the accumulated rainfall evaluation due to the reduction of input factors, compared to the existing HQPF, improved HQPF 1 and 2 predicted a larger accumulated rainfall. Furthermore, HQPF 2 used the lowest number of input factors and simulated more accumulated rainfall than that projected by conventional HQPF and HQPF 1. By improving the performance of conventional machine learning despite using lesser variables, the preprocessing period and model execution time can be reduced, thereby contributing to model optimization. As an additional advanced method of HQPF 1 and 2 mentioned above, a simulated analysis of the Local ENsemble prediction System (LENS) ensemble member and low pressure, one of the observed meteorological factors, was analyzed. Based on the results of this study, if we select for the positively performing ensemble members based on the heavy rain characteristics of Korea or apply additional weights differently for each ensemble member, the prediction accuracy is expected to increase.

Analyses of drought propagation characteristics and damage pattern using meteorological, agricultural, and hydrological drought indices (분야별 가뭄지수를 활용한 우리나라 가뭄 전이 특성 및 가뭄 피해 양상 분석)

  • Ho-Jun Son;Ji Eun Kim;Mi ju Oh;Tae-Woong Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.321-321
    • /
    • 2023
  • 가뭄은 수개월 혹은 수년간 지속적이며, 점진적으로 광범위하게 피해를 미치는 자연재해이다. 강수 부족과 같은 비정상적 기상환경으로 인해 발생하는 기상학적 가뭄이 지속되어 토양 수분량 감소 및 식생에 영향을 미치는 농업적 가뭄을 발생시킬 수 있으며, 하천유출량 및 가용수자원이 감소하는 수문학적 가뭄으로까지 진행된다. 이처럼 분야별 가뭄이 장시간 지속됨에 따라 다른 종류의 가뭄을 발생시키는 현상을 가뭄 전이라고 하며, 가뭄이 전이되지 않은 비전이 사상보다 지역에 큰 피해를 야기한다. 최근 우리나라에서도 가뭄 전이와 관련된 연구들이 진행되고 있다. 하지만 기상학적, 농업적 및 수문학적 가뭄에 대한 가뭄 전이를 모두 고려하여 가뭄의 전이 및 비전이사상간의 피해 양상을 비교하는 연구는 부족한 실정이다. 따라서, 본 연구에서는 전국 단위의 시군구별 SPI(Standardized Precipitation Index), SGI(Standardized Groundwater level Index) 및 PHDI(Palmer Hydrological Drought Index)를 사용하여 각각 기상학적, 농업적 및 수문학적 가뭄을 판단하였다. 각 분야별 가뭄간의 시간적 중복여부를 통해 가뭄의 전이 여부를 판단하고, 가뭄의 전이 특성(풀링, 감쇠, 지체, 연장) 분석을 수행하였다. 또한, 가뭄 전이 사상과 비전이 사상이 발생한 시기의 가뭄 피해 관련 자료를 수집하여, 지역별 가뭄 전이 사상 및 비전이 사상간의 피해 양상을 비교 및 분석하였다. 과거 충청북도 충주시는 2011년의 기상학적 가뭄(비전이 사상) 발생시 피해 인구가 없었으나, 2019년의 기상학적 가뭄에서 수문학적 가뭄으로 전이가 발생하여 999명의 피해 인구가 발생하였다. 즉, 동일한 지역에서 다른 시기에 발생한 가뭄 피해 및 동일한 연도에서 인접한 지역의 가뭄 피해를 분석한 결과, 비전이된 가뭄 사상에 비해 전이된 가뭄 사상에서 더욱 큰 피해를 가지는 것을 확인하였다.

  • PDF

Assessment of Flash Flood Forecasting based on SURR model using Predicted Radar Rainfall in the TaeHwa River Basin

  • Duong, Ngoc Tien;Heo, Jae-Yeong;Kim, Jeong-Bae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.146-146
    • /
    • 2022
  • A flash flood is one of the most hazardous natural events caused by heavy rainfall in a short period of time in mountainous areas with steep slopes. Early warning of flash flood is vital to minimize damage, but challenges remain in the enhancing accuracy and reliability of flash flood forecasts. The forecasters can easily determine whether flash flood is occurred using the flash flood guidance (FFG) comparing to rainfall volume of the same duration. In terms of this, the hydrological model that can consider the basin characteristics in real time can increase the accuracy of flash flood forecasting. Also, the predicted radar rainfall has a strength for short-lead time can be useful for flash flood forecasting. Therefore, using both hydrological models and radar rainfall forecasts can improve the accuracy of flash flood forecasts. In this study, FFG was applied to simulate some flash flood events in the Taehwa river basin by using of SURR model to consider soil moisture, and applied to the flash flood forecasting using predicted radar rainfall. The hydrometeorological data are gathered from 2011 to 2021. Furthermore, radar rainfall is forecasted up to 6-hours has been used to forecast flash flood during heavy rain in August 2021, Wulsan area. The accuracy of the predicted rainfall is evaluated and the correlation between observed and predicted rainfall is analyzed for quantitative evaluation. The results show that with a short lead time (1-3hr) the result of forecast flash flood events was very close to collected information, but with a larger lead time big difference was observed. The results obtained from this study are expected to use for set up the emergency planning to prevent the damage of flash flood.

  • PDF

A Study on the Ecological Rehabilitation Plan for Urban Stream - Focused on Suam Stream in Anyang City - (도시하천의 생태적 재생계획에 관한 연구 - 안양시 수암천을 대상으로 -)

  • Choi, Jung-Kwon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.133-144
    • /
    • 2010
  • The objective of this planning proposal is to rehabilitate the urban stream which has been ecologically disturbed in the urban process. The experimental stream, Su-am stream located in Anyang City is typical urban stream in adjacent land use and the spatial condition. The stream in the watershed context, is the second tributary of Han River, in the Anyangcheon watershed. The Characteristics of the stream reach were analyzed by the river corridor survey. In the conceptual phase, Rehabilitation Programs were established based on the hydrological, ecological and spatial characteristics of the stream. Spatial zoning concept according to the characteristics of the stream and adjacent land use, was suggested 4 types of zoning; ecological preservation zone, natural landscape zone, neighborhood water-friendly zone and CBD water-friendly zone. Implementation Practices can be summarized as follow: For The longitudinal river continuum, some In-stream practices were suggested and implemented; such as channel alignment, step & pool, pool & riffle and low-flow channel bank. For latitudinal continuum and intimate spatial relationship between Sam-duk Park & Su-am stream, gentle sloped bank was planned and implemented. After stream improvement & ecological Implementation, follow-up monitoring and adaptive management programs will be a meaningful process for ecological rehabilitation.

Runoff Characteristics Comparison of Nonpoint Source Pollution for Two Adjacent Stream Watersheds using SWAT Model (SWAT 모형을 이용한 두 인접 하천유역간의 비점오염 유출특성 비교연구)

  • Jung, Chung-Gil;Joh, Hyung-Kyung;Park, Jong-Yoon;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.91-101
    • /
    • 2012
  • This study is to assess the runoff characteristics of nonpoint source pollution loads for Jecheon and Jangpyeong stream watersheds located in the upstream of Chungju lake. The SWAT (Soil and Water Assessment Tool), a physically based distributed hydrological model was calibrated and verified using 5 years (2006 to 2010) streamflow and water quality data. The Nash-Sutcliffe model efficiency for streamflow was 0.60~0.92 and the determination coefficients for sediment, Total Nitrogen (T-N), and Total Phosphorous (T-P) were 0.53~0.71, 0.51~0.91 and 0.38~0.85 respectively. The results showed that the Sediment, T-N, and T-P of Jangpyeong stream were 40.0~60.9 %, 34.8~64.1 % and 76.5~83.9 % higher than Jecheon stream watershed during wet days. The results evaluated high NPS loads at Jangpyeong stream because the percentage of urban and upland crop cultivation area Jangpyeong stream watershed was higher than Jecheon stream watershed.

A Sensitivity of Simulated Runoff Characteristics on the Different Spatial Resolutions of Precipitation Data (강우자료의 공간해상도에 따른 모의 유출특성 민감도 고찰)

  • Lee, Dogil;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.37-49
    • /
    • 2023
  • Rainfall data is one of the most important data in hydrologic modeling. In this study, the impacts of spatial resolution of precipitation data on hydrological responses were assessed using SWAT in the Santa Fe River Basin, Florida. High correlations were found between the FAWN and NLDAS rainfall data, which are observed weather data and simulated weather data based on observed data, respectively. FAWN-based scenarios had higher maximum rainfall and more rainfall days and events compared to NLDAS-based scenarios. Downstream areas showed lower correlations between rainfall and peak discharge than upstream areas due to the characteristics of study site. All scenarios did not show significant differences in base flow, and showed less than 5% of differences in high flows among NLDAS-based scenarios. The impact of resolution will appear differently depending on the characteristics of the watershed and topography and the applied model, and thus, is a process that must be considered in advance in runoff simulation research. The study suggests that applying the research method to watersheds in Korea may yield more pronounced results, and highlights the importance of considering data resolution in hydrologic modeling.

Analysis of Disaster Vulnerable Districts using Heavy Rainfall Vulnerability Index (폭우 취약성 지표를 활용한 재해취약지구 분석)

  • PARK, Jong-Young;LEE, Jung-Sik;LEE, Jin-Deok;LEE, Won-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.12-22
    • /
    • 2018
  • In order to improve the vulnerability of current cities due to climate change, the disaster vulnerability analysis manual for various disasters is provided. Depending on the spatial units, the disaster vulnerability levels, and the conditions of the climatic factors, the results of the disaster vulnerability analysis will have a significant impact. In this study, relative assessments are conducted by adding the eup, myeon and dong unit in addition to census output area unit to analyze the impact on the spatial unit, and relative changes are analyzed according to the classification stages by expanding the natural classification, which is standardized at level four stage, to level two, four and six stage. The maximum rainfalls(10min, 60min, 24hr) are added for the two limited rainfall characteristics to determine the relativity of disaster vulnerable districts by index. The relative assessment results of heavy rainfall vulnerability index showed that the area ratio of disaster areas by spatial unit was different and the correlation analysis showed that the space analysis between the eup, myeon and dong unit in addition to census output area unit was not consistent. And it can be seen that the proportion of disaster vulnerable districts is relatively different a lot due to indexes of rainfall characteristics, spatial unit analysis and disaster vulnerability level stage. Based on the above results, it can be seen that the ratios of disaster vulnerable districts differ relatively significantly due to the level of the disaster vulnerability class, and the indexes of rainfall characteristics. This suggests that the impact of the disaster vulnerable districts depending on indexes is relatively large, and more detailed indexes should be selected when setting up the disaster vulnerabilities analysis index.

Analysis of the Correlation between Social Factors and the Use of Hydrophilic Facilities by Age Group - Case Study at the Samrak and Daejeo Ecological Park (사회적 요인 및 연령대별 친수공원 이용에 관한 상관관계 분석 - 삼락과 대저생태공원을 대상으로)

  • Choi, In-Ho;Lee, Min-Young;Yoon, Hee-Ra;Kim, Seong Jun;Kim, Chang Sung
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.273-280
    • /
    • 2021
  • In the past, the government made a total of 357 hydrophilic districts into parks to create rest areas in the national river with the four major river projects. According to the results of the survey, 60 water-friendly districts with low utilization were lifted in January 2017, and 297 water-friendly districts are currently being managed. Local governments are in charge of the maintenance costs necessary to maintain these hydrophilic districts, which require considerable costs, so it is necessary to accurately grasp the characteristics and needs of local residents at the operation stage after designation. In this study, the characteristics of local residents in the hydrophilic district were analyzed by correlating social factors with river users, crawling social network data to analyze visit patterns, and derived related Keywords, and analyzed the characteristics of the hydrophilic district. The study target areas are Samrak and Daejeo Ecological Park, located downstream of the Nakdonggang River. Social factors analyzed real estate transaction price data, economic activity income, households, stress perception rate, and pet breeding status through public data provided by Statistics Korea, and analyzed user visit patterns and image keywords on weekends.

Surface soil moisture memory using stored precipitation fraction in the Korean peninsula (토양 내 저장 강수율을 활용한 국내 표층 토양수분 메모리 특성에 관한 연구)

  • Kim, Kiyoung;Lee, Seulchan;Lee, Yongjun;Yeon, Minho;Lee, Giha;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.111-120
    • /
    • 2022
  • The concept of soil moisture memory was used as a method for quantifying the function of soil to control water flow, which evaluates the average residence time of precipitation. In order to characterize the soil moisture memory, a new measurement index called stored precipitation fraction (Fp(f)) was used by tracking the increments in soil moisture by the precipitation event. In this study, the temporal and spatial distribution of soil moisture memory was evaluated along with the slope and soil characteristics of the surface (0~5 cm) soil by using satellite- and model-based precipitation and soil moisture in the Korean peninsula, from 2019 to 2020. The spatial deviation of the soil moisture memory was large as the stored precipitation fraction in the soil decreased preferentially along the mountain range at the beginning (after 3 hours), and the deviation decreased overall after 24 hours. The stored precipitation fraction in the soil clearly decreased as the slope increased, and the effect of drainage of water in the soil according to the composition ratio of the soil particle size was also shown. In addition, average soil moisture contributed to the increase and decrease of hydraulic conductivity, and the rate of rainfall transfer to the depths affected the stored precipitation fraction. It is expected that the results of this study will greatly contribute in clarifying the relationship between soil moisture memory and surface characteristics (slope, soil characteristics) and understanding spatio-temporal variation of soil moisture.