• Title/Summary/Keyword: hydrologic cycle

Search Result 154, Processing Time 0.032 seconds

Properties of Hydrologic Cycle in Catchments in Different Land Use and Runoff Analysis by a Lumped Parametric Model

  • Takase, Keiji
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.48-56
    • /
    • 2000
  • In this paper, properties of hydrologic cycle in three experimental catchments were compared and different types of a lumped parametric model were applied to understand the hydrologic cycle in the catchments. One of them is a forest catchment and another one includes the reclained upland fields and last one does terraces paddy fields. The comparison of hydrologic properties showed that the differences in land used have great influences on the soil properties of surface layer, which cause changes in hydrologic processes such as evapotranspiration and storm runoff et.al. By the runoff analysis models, good agreements between observed and calculated discharge from the catchments were obtained and it was found that the differences in values of optimized model parameters and water budget components reflect those in the hydrologic cycle among them.

  • PDF

Properties of Hydrologic Cycle in Catchments in Different Land Use and Runoff Analysis by a Lumped Parametric Model

  • Keiji Takase
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2000.05a
    • /
    • pp.48-56
    • /
    • 2000
  • In this paper, properties of hydrologic cycle in three experimental catchments were compared and different types of a lumped parametric model were applied to understand the hydrologic cycle in the catchments. One of them is a forest catchment and another one includes the reclaimed upland fields and last one does terraces paddy fields. The comparison of hydrologic properties showed that the differences in land use have great influences on the soil properties of surface layer, which changes in hydrologic processes such as evapotranspiration and storm runoff et. al. By the runoff analysis models, good agreements between observed and calculated discharge from the catchments were obtained and it was found that the differences in values of optimized model parameters and water budget components reflect those in the hydrologic cycle among them.

  • PDF

An Analysis on the Hydrologic Cycle Effect of Rodway Permeable Pavement in Rasidential Site (단지내 차도용 투수성 포장의 물순환 효과분석)

  • Lee, Jungmin;Hyun, Kyoung hak;Yuh, OkKyung
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.691-699
    • /
    • 2010
  • In recent years, increases in impervious areas with rapid urbanization and land use changes are causing numerous hydrologic cycle and environmental problems. Impermeable pavement have a various defect such as collection rainwater, decreasing of sliding resistance, and etc. In this study, the hydrologic cycle effect of permeable pavement were analyzed by the experiment and the numerical simulation. The numerical model used was a modified SWMM especially for considering the hydrologic cycle effect of permeable pavement. The parameters of modified SWMM were revised by the experimental results. Also, the effects of runoff quantity reduction are reviewed when permeable pavement is applied to Incheon Cheongna watershed. The hydrologic cycle analysis of Incheon Cheongna watershed, continuous simulations of urban runoff were performed. The analysis results of permeable pavement setup effect on runoff are follows: the surface runoff after permeable pavement setup decreases to 74.35% of the precipitation whereas the surface runoff before permeable pavement setup amounts to 81.38% of the precipitation; the infiltration after permeable pavement setup increases to 15.13% of the precipitation whereas the infiltration before permeable pavement setup amounts to 8.32% of the precipitation.

Development and Application of the Catchment Hydrologic Cycle Assessment Tool Considering Urbanization (I) - Model Development - (도시화에 따른 물순환 영향 평가 모형의 개발 및 적용(I) - 모형 개발 -)

  • Kim, Hyeon-Jun;Jang, Cheol-Hee;Noh, Seong-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.203-215
    • /
    • 2012
  • The objective of this study is to develop a catchment hydrologic cycle assessment model which can assess the impact of urban development and designing water cycle improvement facilities. Developed model might contribute to minimize the damage caused by urban development and to establish sustainableurban environments. The existing conceptual lumped models have a potential limitation in their capacity to simulate the hydrologic impacts of land use changes and assess diverse urban design. The distributed physics-based models under active study are data demanding; and much time is required to gather and check input data; and the cost of setting up a simulation and computational demand are required. The Catchment Hydrologic Cycle Assessment Tool (hereinafter the CAT) is a water cycle analysis model based on physical parameters and it has a link-node model structure. The CAT model can assess the characteristics of the short/long-term changes in water cycles before and after urbanization in the catchment. It supports the effective design of water cycle improvement facilities by supplementing the strengths and weaknesses of existing conceptual parameter-based lumped hydrologic models and physical parameter-based distributed hydrologic models. the model was applied to Seolma-cheon catchment, also calibrated and validated using 6 years (2002~2007) hourly streamflow data in Jeonjeokbigyo station, and the Nash-Sutcliffe model efficiencies were 0.75 (2002~2004) and 0.89 (2005~2007).

Hydrologic Cycle Simulation of Urban river for Rehabilitation of Water Environment (I) - Anyangcheon Basin - (물 환경 건전화를 위한 도시하천의 물 순환 모의 (I) - 안양천 유역 -)

  • Lee, Jung-Min;Lee, Sang-Ho;Lee, Kil-Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.349-357
    • /
    • 2006
  • Nowadays, the discharges of urban streams during dry season are depleted because the hydrologic cycle in the watershed has been destroyed due to the expansion of the impermeable area, the excessive groundwater pumping, climate change, and so forth. The streamflow depletion may bring out severe water quality problems. This research are to investigate the hydrologic characteristics and to develop a technology to restore sound hydrologic cycle of Anyangcheon watershed. For the hydrological cycle analysis of the Anyangcheon watershed, continuous simulations of urban runoff were performed for the upstream basin of Gocheok bridge whose basin area covered 4/5 of the whole catchment area. The increase of impervious area by urbanization was analysed and its effect on urban runoff was evaluated. The SWMM 5 (Storm Water Management Model 5) was used for the continuous simulation of urban runoff. The analysis results of urbanization effect on runoff are as follows: the surface runoff in 2000 increases to 65% of the whole precipitation whereas the surface runoff in 1975 amounts to 50% of the precipitation; the groundwater runoff in 2000 amounts to 7% and shows 6% decrease during the period from 1975 to 2000.

Hydrologic Cycle Simulation of Urban River for Rehabilitation of Water Environment (II) - Dorimcheon Basin - (물 환경 건전화를 위한 도시하천의 물 순환 모의 (II) - 도림천 유역 -)

  • Lee, Sang-Ho;Lee, Jung-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.815-823
    • /
    • 2006
  • The hydrologic cycle in urban catchment has been changed due to the expansion of impervious area by rapid urban development. In this study, the SWMM 5 (Storm Water Management Model 5) model was used to simulate the hydrologic cycle of the Dorimcheon catchment which suffers from the distorted hydrologic cycle as a typical urban catchment. This study compare continuous simulation of urban runoff combining the channel and sewer system with that of channel only in the Dorimcheon catchment. Continuous simulations of urban runoff were performed for the upstream basin of Dorim bridge. The urban impervious regions were processed by the land use analysis from LANDSAT_TM images. It was performed from 1975 to 2000 for every five years. Surface, groundwater and wastewater runoffs were additionally included in the simulations one at a time. Such simulations made it possible to evaluate those components quantitatively. The result of continuous simulation of urban runoff combining the channel and sewer system is that peak flow and recession are well simulated. The analysis results of urbanization effect on runoff are as follows: the surface runoff in 2000 increases to 64% of the whole precipitation whereas the surface runoff in 1975 amounts to 46% of the precipitation; the groundwater runoff in 2000 amounts to 6% and shows 8% decrease during the period from 1975 to 2000.

Prediction of Reservoir Water Level using CAT (CAT을 이용한 저수지 수위 예측)

  • Jang, Cheol-Hee;Kim, Hyeon-Jun;Kim, Jin-Taek
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.27-38
    • /
    • 2012
  • This study is to analyse the hydrological behavior of agricultural reservoir using CAT (Catchment hydrologic cycle Assessment Tool). The CAT is a water cycle analysis model in order to quantitatively assess the characteristics of the short/long-term changes in watershed. It supports the effective design of water cycle improvement facilities by supplementing the strengths and weaknesses of existing conceptual parameter-based lumped hydrologic models and physical parameter-based distributed hydrologic models. The CAT especially supports the analysis of runoff processes in paddy fields and reservoirs. To evaluate the impact of agricultural reservoir operation and irrigation water supply on long-term rainfall-runoff process, the CAT was applied to Idong experimental catchment, operated for research on the rural catchment characteristics and accumulated long term data by hydrological observation equipments since 2000. From the results of the main control points, Idong, Yongdeok and Misan reservoirs, the daily water levels of those points are consistent well with observed water levels, and the Nash-Sutcliffe model efficiencies were 0.32~0.89 (2001~2007) and correlation coefficients were 0.73~0.98.

An Analysis on the Characteristics of the Hydrologic Cycle along Gyeongui Line Forest Park through time series analysis of Biotope Area Ratio and permeable ratio (생태면적률과 투수포장 비율의 시계열 분석을 통한 경의선숲길의 물 순환체계 특성 분석)

  • Kim, Mi-Hu;Oh, Choong-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.3
    • /
    • pp.105-119
    • /
    • 2020
  • The purpose of this study is to analyze the hydrologic cycle environment of Gyeongui Line Forest Park, a linear city park, in order to improve hydrologic cycle systems in urban areas. The method of the study is the Biotope Area Ratio and the Permeable ratio survey. The study subject is the Gyeongui Line Forest Park, created in 2016 as a linear park in Seoul. The results showed that the Biotope Area Ratio improved by 31.2% (31,927㎡) from 35.7% (36,480㎡) in 2000 to 66.9% (68,407㎡) in 2019 on a site area of 102,117㎡. Next, the Permeable ratio improved by 43.8% from 29.0% to 72.8%, and the impermeable ratio decreased by 43.8% from 71.0% to 27.2%. The Biotope Area Ratio exceeded the target ratio of 60% by 6.9%, set by the Ministry of Environment. The ratio of green space exceeded the target ratio of 60%, by 4.0%. And so they contributed to the improvement of the hydrologic cycle by the creation of the Gyeongui Line Forest Park. Urban parks need to exceed the Biotope Area Ratio and the green area ratio of the legal standards, especially when creating large parks of over 100,000 square meters, in the era of climate change. It is necessary to continuously plant trees in the space where trees can be planted, and to contribute to the improvement of the hydrologic cycle system and urban heat island effect by conducting three-dimensional.

The Urban Water Cycle Planning Elements and Hydrologic Cycle Simulation for Green City (녹색도시 물순환 계획요소 및 수문순환 모의)

  • Lee, Jung-Min;Kim, Jong-Lim
    • Land and Housing Review
    • /
    • v.3 no.3
    • /
    • pp.271-278
    • /
    • 2012
  • The climate change and global warming has been a world-wide issue. Also, the green growth has been a widely adopted strategy for national and regional development. In particular, after the Kyoto Protocol to United Nations Framework Convention on Climate Change was declared, the low carbon society was inevitable phenomenon. The hydrologic cycle in urban catchment has been changed due to the expansion of impervious area by rapid urban development. This paper has examined the Water cycle planning elements for green city in the scale of urban planning as well as site planning including housing site. In this study, the SWMM5-LID (Storm Water Management Model5-LID) model was used to simulate the hydrologic cycle of the test catchment as a typical urban catchment. We performed continuous simulation on urban runoff before and after the development of the test catchment and after the installation of Green city planning Elements.

A Modification of SWMM for a Groundwater Pumping Simulation (지하수 양수 모의를 위한 SWMM의 수정)

  • Lee, Sang-Ho;Lee, Jung-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.628-635
    • /
    • 2007
  • As the hydrologic cycle is transformed by the expansion of impermeable area as a result of the urbanization, the function of an ecosystem is deteriorated by the transformed hydrologic cycle. In this study, a SWMM code was modified to have a groundwater pumping option about rivers-aquifer interaction to be possible. The modified SWMM was applied to continuous simulations of urban runoff from Hakuicheon watershed and it was used to analyse the effect of a groundwater pumping. The modified SWMM overcame the limitation of the ground subroutine that it only simulate groundwater inflow from ground to rivers. The result of continuous simulation of groundwater pumping is that surface runoff, groundwater runoff and groundwater level are well simulated, and Modified SWMM expressed groundwater runoff by negative number (-) when groundwater level is less than river stage.