• Title/Summary/Keyword: hydrogeological analysis

Search Result 84, Processing Time 0.022 seconds

Analysis of Groundwater Pollution Potential and Development of Graphic User Interface using DRASTIC System (DRASTIC을 이용한 지하수 오염 가능성 분석 및 그래픽 사용자 인터페이스 개발연구)

  • 민경덕;이영훈;이사로;김윤종;한정상
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.2
    • /
    • pp.101-109
    • /
    • 1996
  • DRASTIC system was used in this study that was developed by U.S. EPA and is widely used for evaluating relative groundwater pollution potential by using hydrogeological factors. The DRASTIC system can be used for selection of well sites, selection of waste disposal sites and basic data of landuse for groundwater protection, and monitoring purpose and efficient allocation of resource for remediation. This study analyzed regional groundwater pollution potential around Chungju Lake using the DRASTIC system. Hydrogeological factors used in this study are depth to water, net recharge, aquifer media, soil media, slope and hydraulic conductivity. For accurate analysis, lineament density that is extracted from image processing of satellite image is overlaid to the DRASTIC system. Results of this study are mapped so groundwater pollution potential and risk degrees can be understood easily and quickly. A graphic user interface is developed to process the data conveniently.

  • PDF

A Study on the Prediction of Groundwater Contamination using GIS (GIS를 이용한 지하수오염 예측에 관한 연구)

  • Jo, Si-Beom;Shon, Ho-Woong;Lee, Kang-Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.17-28
    • /
    • 2004
  • This study has tried to develop the modified DRASTIC Model by supplying the parameters, such as structural lineament density and land-use, into conventional DRASTIC model, and to predict the potential of groundwater contamination using GIS in Hwanam 2 District, Gyeonggi Province, Korea. Since the aquifers in Korea is generally through the joints of rock-mass in hydrogeological environment, lineament density affects to the behavior of groundwater and contaminated plumes directly, and land-use reflect the effect of point or non-point source of contamination indirectly. For the statistical analysis, lattice-layers of each parameter were generated, and then level of confidence was assessed by analyzing each correlation coefficient. Groundwater contamination potential map was achieved as a final result by comparing modified DRASTIC potential and the amount of pollutant load logically. The result suggest the predictability of contamination potential in a specified area in the respects of hydrogeological aspect and water quality.

  • PDF

Comparison of Hydrogeological Time Series Analysis Results Before and After Detrending (변동경향성 제거 전후의 수리지질학적 시계열분석 결과 비교)

  • Lim, Hong-Gyun;Choi, Hyun-Mi;Lee, Jin-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.2
    • /
    • pp.30-40
    • /
    • 2011
  • In this study, we compared the analysis results before and after the detrending for the data. According to the comparison results, correlation functions were not much changed while autocorrelation and spectral density functions were largely varied. Especially, time series data with a long-term variation trend showed a distinctive difference. This study demonstrated a usefulness of the detrending for a further analysis.

Construction of the Geological Model around KURT area based on the surface investigations (지표 조사를 이용한 KURT 주변 지역의 지질모델구축)

  • Park, Kyung-Woo;Koh, Yong-Kwon;Kim, Kyung-Su;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.4
    • /
    • pp.191-205
    • /
    • 2009
  • To characterize the geological features in the study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing several geological investigations such as geophysical surveys and borehole drillings since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep boreholes, which have 500 m depth inside the left research module of the KURT and 1,000 m depth outside the KURT, were drilled to confirm and validate the results from a geological model. The objective of this research was to investigate hydrogeological conditions using a 3-D geological model around the KURT. The geological analysis from the surface and borehole investigations determined four important geologicla elements including subsurface weathered zone, low-angled fractures zone, fracture zones and bedrock for the geological model. In addition, the geometries of these elements were also calculated for the three-dimensional model. The results from 3-D geological model in this study will be beneficial to understand hydrogeological environment in the study area as an important part of high-level radioactive waste disposal technology.

  • PDF

Estimation of Groundwater Recharge in Junggwae-Boeun Area in Ulsan City Using the Water Balance and Hydrogeological Analyses (물수지 및 수리지질 분석을 통한 울산광역시 중괘천-보은천 지역의 지하수 함양량 산정)

  • An, Jeong-Hoon;Hamm, Se-Yeong;Lee, Jeong-Hwan;Kim, Nam-Hoon;Yang, Dae-Bok;Hwang, Jee-Gwang
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.427-442
    • /
    • 2008
  • Estimation of groundwater recharge is one of the most critical issues in sustainable management of groundwater resources. This study estimated groundwater recharge in the Junggwae-Boeun area in Ulsan City, by using the water balance and hydrogeological characteristics of geology and soil. Evapotranspiration was computed by using the Thornthwaite method, and direct runoff was determined by using the SCS-CN technique. Groundwater recharge was obtained as 266 mm/a (20.6% of the average annual precipitation, 1296 mm/a), with 779 mm/a (60.1%) of evapotranspiration and 119 mm/a (9.2%) of direct runoff. Precipitation and groundwater recharge was highly correlated, comparing with the relationships between precipitation and evapotranspiration, and between precipitation and direct runoff. This fact indicates that groundwater recharge responds more sensitively to precipitation than evapotranspiration and direct runoff do.

Development and application of a GIS based groundwater modeling system

  • Lee, Saro;Park, Eungyu;Cho, Min-Joe
    • Spatial Information Research
    • /
    • v.10 no.4
    • /
    • pp.551-565
    • /
    • 2002
  • To carry out systematic groundwater assessment, exploration and management and to use these for protection of optimal groundwater yield, a data analysis and management system is required. Thus, the object of this research was to develop and apply software that integrates GIS and groundwater modeling: GISGAM (GIS for groundwater analysis and management system). The GIS program ArcView and the groundwater-modeling program MODFLOW were used for the GISGAM. The program components consist of a pre-processor, a processor, and a post-processor for groundwater modeling. In addition, GIS functions such as input, manipulation, analysis and output of data were embedded into the program. In applying the program to pilot area, topography, geology, soil, land use and well databases, and a groundwater flow model were constructed for the study area. This case study revealed the advantage and convenience of groundwater modeling using GIS capabilities. By integrating GIS and the groundwater model, the impact of changing values of hydrogeological constants on model results could be more easily evaluated.

  • PDF

A STUDY ON THE PREDICTION OF GROUNDWATER CONTAMINATION USING THE GIS IN HWANAM 2 SECTOR, GYEONGGI PROVINCE, KOREA (GIS를 이용한 경기도 화남2지구의 지하수오염 예측에 관한 연구)

  • HoWoongShon
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.4
    • /
    • pp.267-285
    • /
    • 2001
  • This study has tried to develop the modified DRASTIC Model by supplying the parameters,such as structural lineament density and landuse, into conventional DRASTIC medal, and to predict the potential of groundwater contamination using GIS in Whanam 2 Area, Gyeonggi Province, Korea. Since the aquifers in Korea is generally through the joints of rock-mass in hydrogeological environment, lineament denisity affects to the behavior of goundwater and contaminated plumes directly, and land-use reflect the effect of point or non-point source of contamination indirectly. For the statistical analysis, lattice layers of each parameter were generated, and then level of confidence was assessed by analyzing each correlation coefficient. Composite contamination map was achieved as a final result by comparing modified DRASTIC potential and the amount of generation load of several contaminant sources logically. The result could suggest the predictability of the area of contamination potrntial in the respects of hydrogeological aspect and water quality.

  • PDF

Hydraulic feasibility study on the open-loop geothermal system using a pairing technology (복수정 페어링 기술을 이용한 개방형 지열 시스템의 수리적 타당성 검토)

  • Bae, Sangmu;Kim, Hongkyo;Kim, Hyeon-woo;Nam, Yujin
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.119-124
    • /
    • 2017
  • Purpose: Groundwater heat pump (GWHP) system has high coefficient of performance than conventional air-source heat pump system and closed-loop type geothermal system. However, there is problem in long-term operation that groundwater raise at the diffusion well and reduced at the supply well. Therefore, it is necessary to accurately predict the groundwater flow, groundwater movement and control the groundwater level in the wells. In this research, in consideration of hydrogeological characteristic, groundwater level and groundwater movement were conducted analysis in order to develop the optimal design method of the two-well system using the pairing pipe. Method: For the optimum design of the two-well system, this research focused on the design method of the pairing pipe in the simulation model. Especially, in order to control the groundwater level in wells, pairing pipe between the supply well and diffusion well was developed and the groundwater level during the system operation was analyzed by the numerical simulation. Result: As the result of simulation, the groundwater level increased to -2.65m even in the condition of low hydraulic conductivity and high pumping flow rate. Consequently, it was found that the developed system can be operated stably.

A Study on the Prediction of Groundwater Contamination using the GIS in Hwanam 2 Sector, Gyeonggi Province, Korea (GIS를 이용한 경기도 화남2지구의 지하수오염 예측에 관한 연구)

  • Son, Ho-Ung
    • The Journal of Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.89-107
    • /
    • 2004
  • This study has tried to develop the modified DRASTIC Model by supplying the parameters, such as structural lineament density and landuse, into conventional DRASTIC model, and to predict the potential of groundwater contamination using GIS in Whanam 2 Area, Gyeonggi Province, Korea. Since the aquifers in Korea is generally through the joints of rock-mass in hydrogeological environment, lineament density affects to the behavior of groundwater and contaminated plumes directly, and land-use reflect the effect of point or non-point source of contamination indirectly. For the statistical analysis, lattice layers of each parameter were generated, and then level of confidence was assessed by analyzing each correlation coefficient. Composite contamination map was achieved as a final result by comparing modified DRASTIC potential and the amount of generation load of several contaminant sources logically. The result could suggest the predictability of the area of contamination potential on the respects of hydrogeological aspect and water quality.

  • PDF

A Study of Probabilistic Groundwater Flow Modeling Considering the Uncertainty of Hydraulic Conductivity (수리전도도의 불확실성을 고려한 확률론적 지하수 유동해석에 관한 연구)

  • Ryu Dong-Woo;Son Bong-Ki;Song Won-Kyong;Joo Kwang-Soo
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.145-156
    • /
    • 2005
  • MODFLOW, 3-D finite difference code, is widely used to model groundwater flow and has been used to assess the effect of excavations on the groundwater system due to construction of subways and mountain tunnels. The results of numerical analysis depend on boundary conditions, initial conditions, conceptual models and hydrogeological properties. Therefore, its accuracy can only be enhanced using more realistic and field oriented input parameters. In this study, SA(simulated annealing) was used to integrate hydraulic conductivities from a few of injection tests with geophysical reference images. The realizations of hydraulic conductivity random field are obtained and then groundwater flows in each geostatistically equivalent media are analyzed with a numerical simulation. This approach can give probabilistic results of groundwater flow modeling considering the uncertainty of hydrogeological medium. In other words, this approach makes it possible to quantify the propagation of uncertainty of hydraulic conductivities into groundwater flow.