• Title/Summary/Keyword: hydrogen yield

Search Result 476, Processing Time 0.025 seconds

Characteristics of MgO Layer Deposited under Hydrogen Atmosphere

  • Park, Kyung-Hyun;Kim, Yong-Seog
    • Journal of Information Display
    • /
    • v.7 no.2
    • /
    • pp.1-5
    • /
    • 2006
  • The characteristics of MgO layer deposited under hydrogen atmosphere were investigated. Hydrogen gas was introduced during e-beam evaporation coating process of MgO layer and its effects on microstructure, cathode luminescence spectra, discharge voltages and effective yield of secondary electron emission were examined. The results indicated that the hydrogen influences the concentration and energy levels of defects in MgO layer, which in turn affects the luminance efficiency and discharge delays of the panels significantly.

Chemical and Mechanical Properties of Yellow Poplar Pulp Produced by Formic Acid- Hydrogen Peroxide Pulping (개미산-과산화수소 펄핑에 의하여 생산된 백합나무 펄프의 화학적 및 역학적 특성 분석)

  • Sim, Jaehoon;Kim, Jeong-Ho;Park, Jong-Moon;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.6-12
    • /
    • 2013
  • TFormic acid-hydrogen peroxide (or performic acid) pulping process needs milder reaction condition than other chemical pulping process. Two-step formic acid-hydrogen peroxide pulping process can produce the chemical pulp with similar pulp yield and lignin content compared with soda-anthraquinone process. Formic acid-hydrogen peroxide pulp can be produced less xylan content than other alkaline pulps, which favor for dissolving pulp production. Formic acid-hydrogen peroxide pulp showed better response beating than soda-anthraquinone(AQ) pulps with reaching target freeness with less beating. Also, formic acid-hydrogen peroxide pulp had better tensile index at similar freeness level compared with soda-AQ pulps.

Study on the Effects of Ultrasonic Wave for the Effective Hydrogen Generation by Electrical Discharge Plasma Process

  • Park Jae-Youn;Cong Nghi-Vu;Han Sang-Bo;Kim Jong-Seok;Park Sang-Hyun;Lee Hyun-Woo;Lee Su-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.591-598
    • /
    • 2006
  • The research was tried to investigate the hydrogen generation from water by the pulsed power plasma process. Hydrogen was generated by way of the electrical pulse power discharge process with the ultrasonic wave. The yield on the hydrogen generation was also studied with and without operating the ultrasonic generator, in which the applied high voltage was varied from 10 kV to 15 kV. Nitrogen and argon gases were used as working gases. As the results, the generation yield using the pure nitrogen gas is better than argon and mixed gases such as argon and nitrogen. Hydrogen concentration are significantly increased when the ultrasonic generator was operated with the electrical discharge simultaneously. It is increased with increasing the applied ultrasonic level as well.

Analysis of Influence Factors on Hydrogen Embrittlement of Pipe Steel according to Hydrogen Pipeline Operating Conditions (수소배관 운영 조건에 따른 배관강이 수소취성에 미치는 영향 인자 분석)

  • JONGHYUN BAEK;YUNCHAN JANG;CHEOLMAN KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.216-229
    • /
    • 2024
  • Pipeline steels for hydrogen transmission may cause hydrogen embrittlement due to absorption and diffusion of hydrogen through metals. Hydrogen pipes exhibited similar mechanical properties to atmospheric conditions in terms of tensile and yield strength in a hydrogen atmosphere. This paper aims to provide relevant information regarding hydrogen embrittlement in hydrogen transmission pipeline.

Production of Hydrogen-Rich Gas from Methane by a Thermal Plasma Reforming (고온 플라즈마 개질에 의한 메탄으로부터 고농도 수소생산)

  • Kim, Seong-Cheon;Lim, Mun-Sup;Chun, Young-Nam
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.362-370
    • /
    • 2006
  • The purpose of this paper was to investigate the reforming characteristics and optimum operating condition of the plasmatron assisted $CH_4$ reforming reaction for the hydrogen-rich gas production. Also, in order to increase the hydrogen production and the methane conversion rate, parametric screening studies were conducted, in which there were the variations of the $CH_4$ flow ratio, $CO_2$ flow ratio, vapor flow ratio, mixing flow ratio and catalyst addition in reactor. High temperature plasma flame was generated by air and arc discharge. The air flow rate and input electric power were fixed 5.1 l/min and 6.4 kW, respectively. When the $CH_4$ flow ratio was 38.5%, the production of hydrogen was maximized and optimal methane conversion rate was 99.2%. Under these optimal conditions, the following synthesis gas concentrations were determined: $H_2$, 45.4%; CO, 6.9%; $CO_2$, 1.5%; and $C_2H_2$, 1.1%. The $H_2/CO$ ratio was 6.6, hydrogen yield was 78.8% and energy conversion rate was 63.6%.

Effect of Additives on Gamma Radiolysis of Methanol (메탄올의 감마선 분해에 대한 첨가물의 영향)

  • Choi, Sang-Up
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.3
    • /
    • pp.237-242
    • /
    • 1970
  • Effect of Added 1-hexene on the yield of hydrogen produced from Co-60 gamma radiolysis of methanol was investigated at room temperature. The results indicated that the yield of hydrogen decreased rapidly with increasing 1-hexene concentrations. Effect of added methyl borate on the radiolysis of methanol was also studied in the presence of oxygen. The results revealved that methyl borate acted as a less effective scavenger than oxygen towards the precursors of the radiolysis products. Experimental data previously obtained on the systems with oxygen added were treated more quantitatively to re-examine mechanism of the radiolysis of methanol in detail.

  • PDF

Ruthenium Complex Catalyzed Synthesis of 2-Substituted Benzoxazoles from o-Aminophenol and Alcohol with Spontaneous Hydrogen Evolution

  • Keun-Tae Huh;Sang Chul Shim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.449-452
    • /
    • 1993
  • o-Aminophenols react with alcohols in the presense of a catalytic amount of ruthenium catalyst at 180$^{\circ}C$ to give 2-substituted benzoxazole in good yield. The yields of 2-substituted benzoxazoles were affected by the yield of N-alkylation compound from o-aminophenol and alcohol as starting materials. During the reaction, a stoichiometric amount of hydrogen was spontaneously evolved into the gas phase.

Characteristics of LPG fuel Reforming in Plasma Reformer for Hydrogen Production (수소 생성을 위한 플라즈마 개질기에서의 LPG 연료의 개질 특성)

  • Park, Yunhwan;Lee, Deahoon;Kim, Changup;Kang, Kernyong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.8-14
    • /
    • 2013
  • In this study, characteristics of the geometric design changes of plasma reformer for LPG fuelled vehicles were studied. To improve the yield of hydrogen, reformer 1st, and 2nd were designed. Secondary reformer compared to the primary reformer to increase the volume of the rear part of reformed gas having passed through the plasma and increased reaction time. To compare reforming results of two reformers, various experimental conditions such as, from partial oxidation to total oxidation conditions $O_2/C$ ratios, and total flow rate of 20, 30, 40, 50 lpm conditions, were varied. Results showed that with increasing $O_2/C$ ratios, LPG conversion rate increased, decreased hydrogen selectivity and hydrogen yield optimal point existed and secondary reformer 4.5 times larger than the primary reformer at the same flow rate to 4~14% increase in the yield of hydrogen.

Steam Gasification Characteristics of Wood Pellet (우드펠릿의 스팀가스화 특성)

  • Hwang, Hoon;Lee, Moon-Won;Choi, Sun-Yong;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.215-220
    • /
    • 2010
  • Hydrogen is a clean and efficient energy source and is expected to take an important role in future energy demand. A possibly good route to produce hydrogen is by using biomass and organic wastes as a source through thermo-chemical conversion technology. In this study, pyrolysis of wood Pellet(Oregon pine) has been carried out in batch type fixed-bed reactor in $N_2$ atmosphere during 20 minutes to determine the optimum hydrogen generating conditions. At the influence of temperature, hydrogen yield was increased with increasing temperature. For the influence of Steam/Biomass Ratio(SBR), hydrogen yield was increased by steam addition at low temperature condition. However, effect of steam addition was insignificant over at SBR = 1. The hydrogen yield was increased with increasing SBR at high temperature condition. From result of $H_2$/CO and $H_2/CH_4$ ratio, dominant reaction was steam reforming in this experimental condition. The optimum condition for hydrogen production was determined as follows: $H_2$ yield = 38.3 vol.% (56.01 L/min kg) at $900^{\circ}C$, SBR=3.

Performance Analysis of Water Gas Shift Reaction in a Membrane Reactor (막반응기에서의 수성가스전이반응의 성능 분석)

  • Lim, Hankwon
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.204-208
    • /
    • 2014
  • This study investigated the effect of hydrogen permeance and selectivity, catalyst amount, $H_2O/CO$ ratio in a feed stream, and Ar sweep gas on the performance of a water gas shift reaction in a membrane reactor. It was observed that a minimum hydrogen selectivity of 100 was needed in a membrane reactor to obtain a hydrogen yield higher than the one at equilibrium and the hydrogen yield enhancement gradually decreased as the hydrogen permeance increased. The CO conversion in a membrane reactor initially increased with the catalyst amount and reached a plateau later for a membrane reactor with a low hydrogen permeance while the high CO conversion independent of a catalyst amount was observed for a membrane reactor with a high hydrogen permeance. For the $H_2O/CO$ ratio in a feed stream higher than 1.5, a hydrogen permeance had little effect on the CO conversion in a membrane reactor and it was found that a minimum Ar molar flow rate of $6.7{\times}10^{-6}mol\;s^{-1}$ was needed to achieve the CO conversion higher than the one at equilibrium in a membrane reactor.