• Title/Summary/Keyword: hydrogen yield

Search Result 479, Processing Time 0.027 seconds

Study of Hot Salt Stress Corrosion Crack Initiation of Alloy IMI 834 by using DC Potential Drop Method

  • Pustode, Mangesh D.;Dewangan, Bhupendra;Raja, V.S.;Paulose, Neeta;Babu, Narendra
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.203-208
    • /
    • 2016
  • DC potential drop technique was employed during the slow strain rate tests to study the hot salt stress corrosion crack (HSSCC) initiation at 300 and $400^{\circ}C$. Threshold stresses for HSSCC initiation were found to about 88 % of the yield strength at both temperatures, but the time from crack initiation to final failure (${\Delta}t_{scc}$) decreased significantly with temperature, which reflects larger tendency for brittle fracture and secondary cracking. The brittle fracture features consisted of transgranular cracking through the primary ${\alpha}$ grain and discontinuous faceted cracking through the transformed ${\beta}$ grains.

Photochemical Reaction of Nalidixic Acid in Methanol

  • Park, Hyoung-Ryun;Park, Ok-Hyun;Lee, Hong-Yune;Seo Jung-Ja;Bark, Ki-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1618-1622
    • /
    • 2003
  • The photochemical reactions of methanolic nalidixic acid (NAL) solution in the absence and in the presence of air have been investigated using 300 nm UV light. From the reactions, 1-ethyl-7-methyl-4-oxo-4-hydro-1,8-naphthyridine (EMDN),formic acid, and formaldehyde are produced. In the presence of air, hydrogen peroxide is also detected along with the products listed above. The presence of oxygen during the irradiation of methanolic NAL solution effects on the product yield. The initial quantum yields of the products and of the NAL decomposition are determined. Possible reaction pathways for the photochemical reaction are suggested on the basis of the products analysis.

Thermal Decomposition of Octanethiolate Self-Assembled Monolayers on Cu(111) in UHV

  • Sung, Myung-M.;Yun, Won-J.;Lee, Sun-S.;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.610-612
    • /
    • 2003
  • Octanethiol ($CH_3(CH_2)_7SH$) based self-assembled monolayer on Cu(111) in ultra-high vacuum has been examined using x-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD), intergrated desorption mass spectrometry (IDMS), and contact angle analysis. The results show that the octanethiolate monolayers similar to those on gold are formed on Cu(111). The monolayers are stable up to temperatures of about 480 K. Above 495 K the monolayers decompose via the γ-hydrogen elimination mechanism to yield 1-octene in the gas phase. The thiolate head groups on the copper surface change to Cu₂S following the decomposition of hydrocarbon fragments in the monolayers at about 605 K.

Effect of Deuterated Solvents on the Excited State Photophysical Properties of Curcumin

  • Barik, A.;Goel, N.K.;Priyadarsini, K.I.;Mohan, Hari
    • Journal of Photoscience
    • /
    • v.11 no.3
    • /
    • pp.95-99
    • /
    • 2004
  • Optical absorption and emission studies have been carried out to understand the effect of deuterium on the solvent dependent photophysical properties of curcumin in deuterated solvents such as $CDCl_3,\;(CD_3)_2SO,\;(CD_3)_2CO,\;CD_3OD\;and\;CD_3CN$. Optical absorption spectral studies showed that there is no significant shift in absorption maxima compared to the non-deuterated solvent. The fluorescence maxima shows significant shift with polarity of solvent but not much affected by the deuteration. The fluorescence quantum yield of curcumin increased marginally in almost all the deuterated solvents, indicating reduction in the non-radiative pathways. The fluorescence decay was biexponential in all the solvents and the average fluorescence lifetime was not much affected with deuteration, but showed decrease with increasing solvent polarity. Based on these studies, it is concluded that intermolecular hydrogen transfer is only partially responsible for the excited state deactivation of curcumin.

  • PDF

Catalysis by the Fe(Ⅲ) Complex of N-Dodecyl-3,4-dihydroxybenzamide in the Hydroxylation of Anisole with Hydrogen peroxide$^*$

  • Suh, Jung-Hun;Nahm, Kee-Pyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.3
    • /
    • pp.138-140
    • /
    • 1985
  • Hydroxylation of anisole with $H_2O_2$ was investigated by employing Fe(III) ion and N-dodecyl-3,4-dihydroxybenzamide (DDHB) as a catalyst. The study was aimed at obtaining an insoluble catalyst with a long catalytic life, in view of the inactivation of the catechol portion of the catalyst during the reaction. The rate of decomposition of $H_2O_2$ under various conditions indicated that the reaction proceeds through the catalytic participation of $Fe(III){\cdot}DDHB$. Yield of the hydroxylation products under various conditions revealed that $Fe(III){\cdot}DDHB$ is not inactivated during the reaction.

Synthesis and Characterization of New Calixarenes from Bisphenol A

  • An, Gyo Han;Kim, Seong Gon;Yu, Jong Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.8
    • /
    • pp.813-816
    • /
    • 2000
  • The synthesis of bisphenol A-derived calixarenes has been studied by changing the protecting group of the phe-nol moiety and reaction conditions. Depending on the protecting groups,the corresponding calix[6,7,8]arenes are obtained in different rat ios. For example, whcn mono-p-tert-butyldimethylsilyl-protected bisphenol A is treated with paraformaldehyde and a catalytic amount ofaqueous KOH in refluxing p-xylene with a Dean-Stark water collector for 36 h, the corresponding calix[8]arene, calix[7]arene, and calix[6]arene are producedand separated in the ratio of about 3 : 2 : l and with overall 63% yield. The calixarenes are characterized by NMR spectroscopy and mass analysis. The X-raycrystal structure of the calix[8]arene shows a pleated loop confor-mation, stabilized by intramoIecular hydrogen bonding between the inner phenolic hydroxy groups.

Photophysical Properties of Khellin-Dimethylfumarate C$_4$-Cyclomonoadduct

  • Shim, Sang-Chul;Kang, Ho-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.458-461
    • /
    • 1986
  • The fluorescence intensity of khellin-dimethylfumarate C$_4$-cycloadduct (KDF) is very sensitive to temperature and to the nature of solvents, especially hydrogen-bonding ability. The fluorescence quantum yields of KDF in ethanol and isopentane at 77K are 0.73 and 0.54, respectively, both of which are much larger than the room temperature values. The phosphorescence lifetime is very long and decreases with decreasing the solvent polarity. The phosphorescence and fluorescence quantum yield ratio is very small and decreases with decreasing solvent polarity. The solvent relaxation plays an important role in the excited states of KDF. The internal conversion is a major decay process of the excited singlet state of KDF in all the solvents used at room temperature.

Selective Oxidation of Cyclohexane at Low Temperature by Fe-Pd Bicatalytic Systems: $FeCl_2$-Pd/alumina System and Pd/$Fe_2O_3$ System

  • 전기원;Lingaiah Nakka;김상범;이규완
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1269-1273
    • /
    • 1997
  • The system which employs iron, palladium, molecular oxygen and hydrogen as a model mono-oxygenase, has been investigated to develop a new method for selective cyclohexane oxidation uner mild conditions. This system provides much higher yield and selectivity for the formation of cyclohexanol and cyclohexanone compared to that of the existing industrial method. When the catalytic system, FeCl2-Pd/alumina, was employed, the oxidation system required acetone as a solvent to be efficient and acidifying the solvent by a little addition of acetic acid or HCl made the system more efficient. The Pd catalyst was recyclable without a significant deactivation but the recycling of ferrous chloride showed the decrease in the activity. On the other hand, the heterogeneous catalytic system, Pd/Fe2O3 could be recovered easily and reused after drying treatment.

A Facile Preparation of 2-(2-Hydroxyethyl)homoallenylsilanes Using In Situ Generated Homoallenylindium Reagent

  • Lee, Pil Ho;Bang, Geuk Chan;An, Hyo Sun;Lee, Gu Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1385-1389
    • /
    • 2001
  • In situ generated homoallenylindium reagents derived from the reaction of indium with 4-bromo-3-[(tri-methylsilyl) methyl]-1,2-butadiene reacted with a variety of aldehydes in DMF to produce 2-(2-hydroxy-ethyl) homoallenylsilanes at room temperatu re in good to excellent yields. 2- or 3-Hydroxybenzaldehyde that contains labile hydrogen was reacted with homoallenylindium reagent to provide the homoallenylsilanes. In the case of 4-formylbenzoic acid, the desired compound was produced in 88% yield. 4-Bromo-3-[(trimethyl-silyl) methyl]-1,2-butadiene was prepared from monoacetylation and mesylation of 2-butyn-1,4-diol, addition of trimethylsilylmethyl anion, saponification and mesylation followed by Finkelstein reaction.

Redox Property of Vanadium Oxide and Its Behavior in Cataltic Oxidation

  • 김영호;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1457-1463
    • /
    • 1999
  • Structure and their redox property of the vanadium oxides prepared by decomposing NH₄VO₃ at various temperatures were studied by XRD, SEM, XPS, and temperature programmed reduction/temperature programmed oxidation (TPR/TPO) experiment. All TPR profiles have two sharp peaks in the temperature range 650-750℃, and the area ratio of the two sharp peaks changed from sample to sample. There were three redox steps in TPR/TPO profiles. The oxidation proceeded in the reverse order of the reduction process, and both the reactions proceeded via quite a stable intermediates. The changes of the morphological factor $(I_{(101)}/I_{(010)})$, the ratio of $O_{1S}$ peak area (O$_{1S}$( α)/O$_{1S}$( β)) in the XPS results, and the ratio of hydrogen consumption in TPR profiles with various vanadium oxides showed the distinct relationship between the structural property and their redox property of vanadium oxides. The change of the specific yield of phthalic anhydride with various vanadium oxides showed a very similar trend to those of the peak area ratio in TPR profiles, which meant that the first reduction step related to the partial oxidation of o-xylene on the vanadium oxide catalyst.