DOI QR코드

DOI QR Code

Thermal Decomposition of Octanethiolate Self-Assembled Monolayers on Cu(111) in UHV

  • Sung, Myung-M. (Department of Chemistry, Kookmin University) ;
  • Yun, Won-J. (Department of Chemistry, Kookmin University) ;
  • Lee, Sun-S. (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Yun-Soo (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • Published : 2003.05.20

Abstract

Octanethiol ($CH_3(CH_2)_7SH$) based self-assembled monolayer on Cu(111) in ultra-high vacuum has been examined using x-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD), intergrated desorption mass spectrometry (IDMS), and contact angle analysis. The results show that the octanethiolate monolayers similar to those on gold are formed on Cu(111). The monolayers are stable up to temperatures of about 480 K. Above 495 K the monolayers decompose via the γ-hydrogen elimination mechanism to yield 1-octene in the gas phase. The thiolate head groups on the copper surface change to Cu₂S following the decomposition of hydrocarbon fragments in the monolayers at about 605 K.

Keywords

References

  1. Ulman, A. An Introduction to Ultrathin Organic Films; AcademicPress: Boston, MA, 1991.
  2. Swalen, J. D.; Allara, D. L.; Andrade, J. D.; Chandross, E. A.;Garoff, S.; Israelachvili, J.; McCarthy, T. J.; Murray, R.; Pease, R.F.; Rabolt, J. F.; Wynne, K. J.; Yu, H. Langmuir 1987, 3, 932. https://doi.org/10.1021/la00078a011
  3. Wasserman, S. R.; Tao, Y.-T.; Whitesides, G. M. Langmuir 1989,5, 1074. https://doi.org/10.1021/la00088a035
  4. Laibinis, P. E.; Whitesides, G. M. J. Am. Chem. Soc. 1992, 114,9022. https://doi.org/10.1021/ja00049a038
  5. Kluth, G. J.; Sung, M. M.; Maboudian, R. Langmuir 1997, 13,3775. https://doi.org/10.1021/la970135r
  6. Sung, M. M.; Kluth, G. J.; Yauw, O. W.; Maboudian, R. Langmuir1997, 13, 6168.
  7. Nishida, N.; Hara, M.; Sasabe, H.; Knoll, W. Jpn. J. Appl. Phys.1996, 35, L799. https://doi.org/10.1143/JJAP.35.L799
  8. Sung, M. M.; Kim, Y. Bull. Korean Chem. Soc. 2001, 22, 748.
  9. Briggs, D.; Seah, M. P. Practical Surface Analysis; John Willy &Sons Ltd.: England, 1990.
  10. Dubois, L. H. Rev. Sci. Instrum. 1989, 60, 410. https://doi.org/10.1063/1.1140392
  11. Neumann, A. W.; Good, R. J. Surface and Colloid Science Vol. II:Experimental Methods; Plenum Press: New York, 1979.
  12. Galtayries, A.; Bonnelle, J.-P. Surf. Interface Anal. 1995, 23, 171. https://doi.org/10.1002/sia.740230308

Cited by

  1. Enhancing Cu-Cu Diffusion Bonding at Low Temperature Via Application of Self-assembled Monolayer Passivation vol.158, pp.10, 2011, https://doi.org/10.1149/1.3622478
  2. Influence of Surface Morphology and Substrate on Thermal Stability and Desorption Behavior of Octanethiol Self-Assembled Monolayers: Cu, Ag, and Au vol.116, pp.33, 2012, https://doi.org/10.1021/jp3041204
  3. Electrochemical and Spectroscopic Study of the Self-Assembling Mechanism of Normal and Chelating Alkanethiols on Copper vol.28, pp.17, 2012, https://doi.org/10.1021/la300021g
  4. Force-induced mechanical response of molecule–metal interfaces: molecular nanomechanics of propanethiolate self-assembled monolayers on Au(111) vol.15, pp.38, 2013, https://doi.org/10.1039/c3cp52181h
  5. A signal on aptamer-based electrochemical sensing platform using a triple-helix molecular switch vol.6, pp.16, 2014, https://doi.org/10.1039/C4AY00807C
  6. Discotic liquid crystals as novel corrosion-resistant coatings vol.51, pp.5, 2015, https://doi.org/10.1039/C4CC06811D
  7. Organothiol-Based Hybrid-Layer Strategy for High-Performance Copper Adhesion and Stress-Migration via Simultaneous Oxide Reduction vol.3, pp.14, 2016, https://doi.org/10.1002/admi.201600118
  8. Atomic Layer Deposition of TiO2 Thin Films from Ti(OiPr)2(dmae)2 and H2O vol.25, pp.4, 2003, https://doi.org/10.5012/bkcs.2004.25.4.475
  9. Effect of Island Size on the Packing Density in the Early Stages of Alkylsilane-Based Monolayer Self Assembly vol.26, pp.1, 2003, https://doi.org/10.5012/bkcs.2005.26.1.127
  10. Structure and Electrochemical Behavior of Aromatic Thiol Self-Assembled Monolayers on Au(111) vol.27, pp.3, 2006, https://doi.org/10.5012/bkcs.2006.27.3.403
  11. Thermal Stability of Thiolate Self-Assembled Monolayers on Copper Surface vol.646, pp.None, 2003, https://doi.org/10.4028/www.scientific.net/amr.646.18
  12. Self-assembled monolayers of thiolates on metals: a review article on sulfur-metal chemistry and surface structures vol.4, pp.53, 2014, https://doi.org/10.1039/c4ra04659e
  13. Growth of Layered Copper-Alkanethiolate Frameworks from Thin Anodic Copper Oxide Films vol.123, pp.28, 2003, https://doi.org/10.1021/acs.jpcc.9b03264
  14. Corrosion inhibitor by a polymerizable columnar mesogen based on hexabenzocoronene derivative vol.67, pp.9, 2003, https://doi.org/10.1002/jccs.202000168