• 제목/요약/키워드: hydrogen separation

검색결과 367건 처리시간 0.02초

수소 분리 응용을 위한 폴리벤즈이미다졸 기반 분리막의 연구 동향 (Research Trends of Polybenzimidazole-based Membranes for Hydrogen Purification Applications)

  • 김지현;김기현;남상용
    • 공업화학
    • /
    • 제31권5호
    • /
    • pp.453-466
    • /
    • 2020
  • 에너지 부족 및 환경 오염위기를 극복하기 위해 친환경 에너지에 대한 수요가 증가함에 따라 잠재적인 해결책으로 수소 경제가 제안되고 있다. 이에 따라 경제적이고 효율적인 수소 생산은 필수적인 산업공정으로 여겨지고 있으며, 연소 전 석탄의 가스화 또는 천연가스 개질반응에 의해 생성된 합성가스에서 H2를 정제하는 동시에 CO2를 포집하는 H2/CO2 분리에 수소 분리막을 적용하는 연구가 지속되고 있다. 고온 환경에서 H2에 선택적인 유리질 고분자 막은 CO2 포집 성능의 잠재력을 갖추고 있으며, 에너지 및 비용 면에서 효율적인 시스템이다. 폴리벤즈이미다졸(PBI) 기반 수소 분리막은 고온의 구동 조건에서도 탁월한 화학적·기계적 안정성을 보여주고 있어 고 성능의 PBI 수소 분리막 개발이 최근 급속도로 진행되고 있다. 본 총설에서는 산업적으로 적용 가능성이 있는 수소 분리막 개발을 위해 PBI를 기반으로 한 구조 변형 막, 가교 막, 혼합 막, 탄화 막의 최근 발전에 대하여 중점적으로 다루고 있다.

Pd-based metallic membranes for hydrogen separation and production

  • Tosti, Silvano;Basile, Angelo
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2003년도 The 4th Korea-Italy Workshop
    • /
    • pp.25-28
    • /
    • 2003
  • Low cost composite metallic membranes for the hydrogen separation and production have been prepared by using thin Pd-Ag foils reinforced by metallic (stainless steel and nickel) structures. Especially, “supported membranes” have been obtained by a diffusion welding procedure in which Pd-Ag thin foils have been joined with perforated metals (nickel) and expanded metals (stainless steel): in these membranes the thin palladium foil assures both the high hydrogen permeability and the perm-selectivity while the metallic support provides the mechanical strength. A second studied method of producing "laminated membranes" consists of coating non-noble metal sheets with very thin palladium layers by diffusion welding and cold-rolling. Palladium thin coatings over these metals reduce the activation energy of the hydrogen adsorption process and make them permeable to the hydrogen. In this case, the dense non-noble metal has been used as a support structure of the thin Pd-Ag layers coated over its surfaces: a proper thickness of the metal assures the mechanical strength, the absence of defects (cracks, micro-holes) and the complete hydrogen selectivity of the membrane. membrane.

  • PDF

표면 니켈 조성에 따른 팔라듐-니켈-은 합금 수소분리막의 수소투과선택 특성 (Hydrogen Perm-Selectivity Properties of the Pd-Ni-Ag Alloy Hydrogen Separation Membranes with Various Surface Nickel Composition)

  • 임다솔;김세홍;김도희;조서현;김동원
    • 한국표면공학회지
    • /
    • 제51권5호
    • /
    • pp.277-290
    • /
    • 2018
  • In this study, Pd-Ni-Ag alloy hydrogen separation membranes were fabricated by Pd/Ag/Pd/Ni/Pd multi-layer sputter deposition on the modified MIM(Metal Injection Molding)-PSS(Porous Stainless Steel) support and followed heat treatment. Nickel, used as an alloying element in Pd alloy membranes, is inexpensive and stable material in a hydrogen isotope environment at high temperature up to 1123 K. Hydrogen perm-selectivity of Pd-Ni-Ag alloy membranes is affected not only by composition of membrane films but also by other factors such as surface properties of PSS support, microstructure of membrane films and inter-diffused impurities from PSS support. In order to clarify the effect of surface Ni composition on hydrogen perm-selectivity of Pd-Ni-Ag alloy membranes, the other effects were significantly minimized by the formation of dense and homogeneous Pd-Ni-Ag alloy membranes. Hydrogen permeation test showed that hydrogen permeability decreased from $7.6{\times}10^{-09}$ to $1.02{\times}10^{-09}mol/m{\cdot}s{\cdot}Pa^{0.5}$ as Ni composition increased from 0 to 16 wt% and the selectivity for $H_2/N_2$ was infinite.

니켈 지지체를 이용한 바나듐기 분리막의 수소 투과특성 (Effects of Nickel Supports on Hydrogen Permeability of Vanadium based Membrane)

  • 조경원;최재하;정석;김경일;홍태환;안중우
    • 한국수소및신에너지학회논문집
    • /
    • 제24권3호
    • /
    • pp.200-205
    • /
    • 2013
  • The separation of hydrogen depends on porosity, diffusivity and solubility in permeation membrane. Dense membrane is always showing a solution diffusion mechanism but porous membrane is not showing. Therefore, porous membrane has a good hydrogen flux due to pore is carried out transferred media. This mechanism is named as the Knudsen diffusion. Hydrogen molecules or hydrogen atoms are diffused along pore that is a mean free path. In this study, complex layer hydrogen permeation membrane was fabricated by hot press process. And then, it was evaluated and calculated to relationship between hydrogen permeability and membrane porosity.

$H_2/Ar$ 혼합기체의 PSA 공정 실험과 모사 (Experiment and Simulation of PSA Process for $H_2/Ar$ Mixtures gas)

  • 강석현;정병만;최현우;김성현;이병권;최대기
    • 한국수소및신에너지학회논문집
    • /
    • 제16권2호
    • /
    • pp.180-190
    • /
    • 2005
  • The PSA cycle was performed for the separation of binary gas mixture $H_2/Ar$ (80%/20%) using the six-step two-bed process. Adsorption equilibrium contains a LRC model for equilibrium adsorption isotherms and a LDF model for mass transfer. Aspen ADSIM, simulator was applied to predict the separation performance. The effect of cycle parameters such as feed rate, adsorption pressure and P/F ratio on the separation of hydrogen has been studied in experiment and simulation. In the results, maximize the recovery of hydrogen as a high purity was 13LPM feed flowrate, 120sec adsorption time, 11atm adsorption pressure and 0.1 P/F ratio in a cyclic steady-state come out since 10th cycle.

TIN-M(M=Co, NI) 복합 분리막의 제조 및 수소투과 특성평가 (Fabrications and Evaluations of Hydrogen Permeation on TIN-M(Co, NI) Composite Membrane)

  • 김경일;유성웅;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제21권4호
    • /
    • pp.264-270
    • /
    • 2010
  • Recently, the most promising methods for high purity hydrogen production are membranes separation such as polymer, metal, ceramic and composites. It is well known that Pd and Pd-alloys membranes have excellent properties for hydrogen separation. However, it has hydrogen embrittlement and high cost for practical applications. Therefore, most scientists have studied new materials instead of Pd and Pd-alloys. On the other hand, TiN powders are great in resistance to acids and chemically stable under high operating temperature. In order to get specimens for hydrogen permeation, the TiN powders synthesized were consolidated together with Co, Ni powders by hot press sintering (HPS). During the consolidation of powders at HPS, heating rate was 10 K/min and the pressure was 10 MPa. It was characterized by XRD, SEM. Also, we estimated the hydrogen permeability by Sievert's type hydrogen permeation membrane equipment.

에어로졸 증착법(Aerosol Depostion method)에 의한 $Ba(Zr_{0.85}Y_{0.15})O_{3-\delta}$-NI 수소분리막 제조 ($Ba(Zr_{0.85}Y_{0.15})O_{3-\delta}$-NI Composite Membrane for Hydrogen Separation by Aerosol Deposition Method)

  • 박영수;최진섭;변명섭;김진호;황광택
    • 한국수소및신에너지학회논문집
    • /
    • 제21권4호
    • /
    • pp.271-277
    • /
    • 2010
  • $(Ba(Zr_{0.85}Y_{0.15})O_{3-\delta})$ oxide, showing high protonic conductivity at high temperatures and good chemical stability with $CO_2$ are referred to as hydrogen separation membrane. For high efficiency of hydrogen separation ($H_2$ flux and selectivity) and low fabrication cost, ultimate thin and dense BZY-Ni layer has to be coated on a porous substrate such as $ZrO_2$. Aerosol depostion (AD) process is a novel technique to grow ceramic film with high density and nano-crystal structure at room-temperature, and may be applicable to the fabrication process of AD integration ceramic layer effectively. XRD, SEM, X-ray mapping measurements were conducted in order to analyze the characteristics of BZY-Ni membrane fabricated by AD process. it is observed that it is homogeneous distribution for BZY-Ni. The result of $H_2$ permeation rate suggests that BZY-Ni composite is higher than BZY.

신조성의 Ti-기반 합금 수소분리막의 설계 및 수소투과 성능 (Fabrication and Hydrogen Separation Performance of Newly Created Ti-Based Alloy Membrane)

  • 고민영;신민창;장학룡;황재연;한성우;김시은;박정훈
    • 멤브레인
    • /
    • 제34권2호
    • /
    • pp.146-153
    • /
    • 2024
  • 본 실험에서는 Ti를 기반으로 한 평판 수소 분리막을 설계하여 제조하였다. 새로운 조성의 Ti를 베이스로 한 수소 분리막을 찾기 위하여 여러 합금들의 물리화학적 특성과 수소투과도 사이의 상관관계에 대해 조사하였다. 이를 바탕으로 신조성의 합금막 2종(Ti14.2Zr66.4Ni12.6Cu6.8 (70 ㎛), Ti17.3Zr62.7Ni20 (80 ㎛))을 설계 및 제조하였다. 제조된 평판 수소 분리막은 300~500℃, 1~4 bar의 조건에서 혼합 가스(H2, N2), sweep 가스(Ar)를 이용하여 수소 투과 실험을 진행하였다. Ti14.2Zr66.4Ni12.6Cu6.8 합금막은 500℃, 4bar에서 최대 16.35 mL/cm2 min의 flux를 가지며, Ti17.3Zr62.7Ni20 합금막은 450℃, 4 bar에서 최대 10.28 mL/cm2 min의 flux를 가진다.

혼합가스에서 수소분리를 위한 애용량 PSA공정 (Large-Scale PSA Process for Hydrogen Separation from Gas Mixture)

  • 최대기;김은철;강석현;노경호
    • 한국수소및신에너지학회논문집
    • /
    • 제17권1호
    • /
    • pp.8-20
    • /
    • 2006
  • For large scale separation hydrogen from different mixing ratio(60/40 and 80/20 vol.%) of hydrogen and methane $1Nm^3/hr$ and $4Nm^3/hr$ 2bed-6step pressure swing adsorption(PSA) process was used, respectively. The effects of the feed gas pressure, adsorption time, the feed flow rate and the P/F(purge to feed) ratio on the process performance were evaluated. In the $1Nm^3/hr$ PSA results, 11 atm adsorption pressure and 0.10 P/F ratio might be optimal values to obtain more than 75 % recovery and 99 % purity hydrogen in these processing. The optimum feed flowrate was 22 LPM and 17 LPM in the ratio 60/40 and 80/20, respectively. In the $4Nm^3/hr$ PSA results, 10 atm adsorption pressure might be simulated values to obtain more than 80 % recovery and 99 % purity hydrogen in these processing.

$CO_2/H_2$ 원천분리 SMART 시스템의 수소생산특성 (Hydrogen Generation Characteristics of SMART System with Inherent $CO_2/H_2$ Separation)

  • 류호정
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.382-390
    • /
    • 2007
  • To check the feasibility of SMART(Steam Methane Advanced Reforming Technology) system, an experimental investigation was performed. A fluidized bed reactor of diameter 0.052m was operated cyclically up to 10th cycle, alternating between reforming and regeneration conditions. FCR-4 catalyst was used as the reforming catalyst and calcined limestone(domestic, from Danyang) was used as the $CO_2$ absorbent. Hydrogen concentration of 98.2% on a dry basis was reached at $650^{\circ}C$ for the first cycle. This value is much higher than $H_2$ concentration of 73.6% in the reformer of conventional SMR (steam methane reforming) condition. The hydrogen concentration decreased because the $CO_2$ capture capacity decreased as the number of cycles increased. However, the average hydrogen concentration at 10th cycle was 82.5% and this value is also higher than that of SMR. Based on these results, we could conclude that the SMART system can replace SMR system to generate pure hydrogen without HTS (high tempeature shift), LTS (low temperature shift) and $CO_2$ separation process.