• Title/Summary/Keyword: hydrogen pores

Search Result 88, Processing Time 0.023 seconds

Removal of CO2 from Syngas(CO2 and H2) Using Nanoporous Na2CO3/Al2O3 Adsorbents (나노기공성 Na2CO3/Al2O3 흡착제를 이용한 합성가스(CO2, H2) 내 CO2 제거)

  • Bae, Jong-Soo;Park, Joo-Won;Kim, Jae-Ho;Lee, Jae-Goo;Kim, Younghun;Han, Choon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.646-650
    • /
    • 2009
  • Hydrocarbon gases generated from the gasification of waste could be converted into $CO_2$ and $H_2$ using reforming catalysts and then $CO_2$ was selectively adsorbed and removed to obtain pure hydrogen. To optimize adsorption efficiency for $CO_2$ removal, $Na_2CO_3$ was supported on nanoporous alumina and the efficiency was compared with commercial alumina(Degussa). Nanoporous adsorbents formed more uniform pores and larger surface area compared to adsorbents using commercial alumina. The increase of $Na_2CO_3$ loading improved adsorption of $CO_2$. Finally, the highest adsorption capacity per unit mass of $Na_2CO_3$ could be achieved when the loading of $Na_2CO_3$ reached up to 20wt%. When the content of $Na_2CO_3$ increased above 20 wt%, it aggregated on the surface, and the pore volume was decreased. Used adsorbents could be recycled by the thermal treatment.

Hydrogen and Ethanol Gas Sensing Properties of Mesoporous P-Type CuO

  • Choi, Yun-Hyuk;Han, Hyun-Soo;Shin, Sun;Shin, Seong-Sik;Hong, Kug-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.222-222
    • /
    • 2012
  • Metal oxide gas sensors based on semiconductor type have attracted a great deal of attention due to their low cost, flexible production and simple usability. However, most works have been focused on n-type oxides, while the characteristics of p-type oxide gas sensors have been barely studied. An investigation on p-type oxides is very important in that the use of them makes possible the novel sensors such as p-n diode and tandem devices. Monoclinic cupric oxide (CuO) is p-type semiconductor with narrow band gap (~1.2 eV). This is composed of abundant, nontoxic elements on earth, and thus low-cost, environment-friendly devices can be realized. However, gas sensing properties of neat CuO were rarely explored and the mechanism still remains unclear. In this work, the neat CuO layers with highly ordered mesoporous structures were prepared by a template-free, one-pot solution-based method using novel ink solutions, formulated with copper formate tetrahydrate, hexylamine and ethyl cellulose. The shear viscosity of the formulated solutions was 5.79 Pa s at a shear rate of 1 s-1. The solutions were coated on SiO2/Si substrates by spin-coating (ink) and calcined for 1 h at the temperature of $200{\sim}600^{\circ}C$ in air. The surface and cross-sectional morphologies of the formed CuO layers were observed by a focused ion beam scanning electron microscopy (FIB-SEM) and porosity was determined by image analysis using simple computer-programming. XRD analysis showed phase evolutions of the layers, depending on the calcination temperature, and thermal decompositions of the neat precursor and the formulated ink were investigated by TGA and DSC. As a result, the formation of the porous structures was attributed to the vaporization of ethyl cellulose contained in the solutions. Mesoporous CuO, formed with the ink solution, consisted of grains and pores with nano-meter size. All of them were strongly dependent on calcination temperature. Sensing properties toward H2 and C2H5OH gases were examined as a function of operating temperature. High and fast responses toward H2 and C2H5OH gases were discussed in terms of crystallinity, nonstoichiometry and morphological factors such as porosity, grain size and surface-to-volume ratio. To our knowledge, the responses toward H2 and C2H5OH gases of these CuO gas sensors are comparable to previously reported values.

  • PDF

Effects of Co/Al and Si/Al Molar Ratios on DTO (Dimethyl Ether to Olefins) Reaction over CoAPSO-34 Catalyst (CoAPSO-34 촉매상에서 DTO (Dimethyl Ether to Olefins) 반응에 미치는 Co/Al 및 Si/Al 몰 비의 영향)

  • Kim, Hyo-Sub;Lee, Su-Gyung;Choi, Ki-Hwan;Lee, Dong-Hee;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.138-144
    • /
    • 2015
  • Effects of Co/Al and Si/Al molar ratios of cobalt incorporated SAPO-34 catalysts (CoAPSO-34) on their catalytic lifetime were investigated in dimethyl to olefin (DTO) reaction. The property of CoAPSO-34 catalysts was characterized using XRD, SEM, $^{29}Si$ MAS NMR, and $NH_3$-TPD techniques. First, the lifetime of CoAPSO-34 prepared by varying Co/Al molar ratios was improved than that of using the SAPO-34 catalyst, and the optimal Co/Al molar ratio was 0.0025. The total acid site amounts increased from 0.432 to 1.111 mmol/g with increasing Si/Al molar ratios from 0.05 to 0.20 while fixing a Co/Al molar ratio of 0.0025. However, the catalysts with too high acid site amounts were deactivated rapidly with blockages of the pores due to the fast accumulation of polycyclic aromatic hydrocarbons in the cage. Therefore, the CoAPSO-34 catalyst with a proper Si/Al molar ratio of 0.10 was the most superior in terms of the lifetime, which was improved by about 87% as compared with that of the SAPO-34 catalyst.

Studies on the Effects of Variables on the Fabrication Of C/SiC Composite by Chemical Vapor Infiltration in a Fluidized Bed Reactor (유동층반응기에서 화학증기침투에 의한 C/SiC의 복합체 제조시 변수의 영향 연구)

  • Lee, Sung-Joo;Kim, Yung-Jun;Kim, Mi-Hyun;Rim, Byung-O;Chung, Gui-Yung
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.843-847
    • /
    • 1999
  • In this research, C/SiC composites, i.e. activated carbon coated with SiC obtained from dichlorodimethylsilane(DDS) and hydrogen, have been made by chemical vapor infiltration(CVI) in a fluidized bed reactor. Activated carbons of sizes of 4~12, 12~20, and 20~40 mesh were used. After deposition the surface area, the amount and the shape of deposit of each sample were observed at different concentrations of reactant DDS, sizes of activated carbon, reaction pressures and reaction times. The experimental results showed that uniform deposition in the pores of sample was obtained at a lower concentration of DDS and a lower pressure. Additionally, from the observation that the pore diameter and the surface area have minimum values at a certain time of deposition, it was known that deposition occurred inside of the pore at first and then on the outside of particle. Small particles of SiC were deposited uniformly on the surface of activated carbon at lower DDS concentrations and lower reaction pressures. The results were confirmed by SEM, TGA, the pore size distribution analyzer and BET.

  • PDF

Catalytic Cracking of Waste Lubricant Oil over Solid Acid Catalysts (고체산 촉매를 이용한 폐윤활유의 촉매 분해)

  • Hwang, In Hye;Yang, Hyeon Sun;Lee, Jong-Jib;Choi, Ko-Yeol;Lee, Chang-Yong
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.320-325
    • /
    • 2012
  • The catalytic cracking of waste lubricant oil was carried out on silica-alumina (SA), hydrogen-type mordenite (HM), and dealuminated mordenite (DM) with the silica/alumina ratio of 10.5, 10, and 12.5, respectively. Activity in the catalytic cracking was found to be in the order of SA > DM > HM. Carbon number distribution of the oil obtained over SA was similar to that of gasoline while that of the oil obtained over DM was similar to that of diesel. Carbon number distribution of the oil obtained over HM was similar to that between gasoline and diesel. Acid amounts of three kinds of catalysts were found to be in the order of $SA\;{\approx}\;HM$ > DM. Unlike HM and DM with pores of an uniform diameter below 10 A, SA had a pore size distribution within the range of 10 to 50 A. These results indicate that the acid amount and pore size of the catalysts may be related to the carbon number distribution of the cracked oil. The decrement of surface area by the accumulation of carbon and impurities on the surface of the catalyst was found to be in the order of SA > DM > HM.

Synthesis of Prussian Blue Analogue and Magnetic and Adsorption Characteristics of MnFe2O4 (프러시안 블루 유사체의 합성 및 MnFe2O4의 자성과 흡착 특성)

  • Lee, Hye-In;Kang, Kuk-Hyoun;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • The Prussian Blue Analogue(PBA) has three dimensional structure and the metal - organic framework material, and it has a variety configurations depending on the type of organic ligands. PBA has been receving an attention in the fields of biosensors, optical, catalytic, and hydrogen storage device. Also, it is an environmental friendly substance with a chemical stability. In addition, PBA is widely used in the filed of adsorption art since we can adjust the size of the fine pores. In this study, we synthesized $Mn_3[Fe(CN)_6]_2$, an organometallic framework chains by using a hydrothermal synthesis method. We used $K_4[Fe(CN)_6]$ and $MnCl_2$ as precursors. We also produced a manganese iron oxide, by baking the synthesized material. The effect of the size and shape of the particles was examined by controling pH of the precursor solution, the molar concentration of the precursor, and reaction time as the experimental variables. Synthesized absorbent was analyzed by XRD, SEM, FT-IR, UV-Vis, and TG / DTA to evaluate the adsorption properties of several dyes.

Catalytic Hydrogenation of Triglyceride in a Semi-batch Reactor (Semi-batch 반응기에서의 트리글리세라이드 접촉 수소화 반응)

  • An, Jae-Yong;Lee, Choul-Ho;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • The aim of this study is to investigate the feasibility of an Ni-SA catalyst, which was prepared from nickel, kieselguhr, and alumina, for the hydrogenation of triglyceride in a bench-scale reactor. Ni-SA powders were prepared by precipitating nickel precursors on a silica and alumina support. The powder was reduced in a hydrogen flow, mixed with a saturated palm oil, and then cooled to prepare an Ni-SA catalyst tablet. The sizes of NiO crystals of a commercial Pricat catalyst and the Ni-SA catalyst prepared in this study were $35{\AA}$ and $38{\AA}$, respectively. The pore volume and pore size of the Ni-SA catalyst was much larger than the pore volume and pore size of the Pricat catalyst. In addition, the average particle size of the Ni-SA catalyst was much smaller than that of the Pricat catalyst. The triglyceride hydrogenation reaction was carried out in a semi-batch reactor using catalysts impregnated with oil and molded into tablets. It was found that the Ni-SA catalyst was superior to the commercial Pricat catalyst in triglyceride hydrogenation, which could be ascribed to the raw material and the products being less influenced by the diffusion resistance in the pores of the Ni-SA catalyst. The Ni-SA catalyst prepared in this study has the potential to replace the Pricat catalyst as a catalyst for use in the commercial process for hydrogenation of triglyceride.

Characterization of Repeated Deactivation and Subsequent Re-activation of Photocatalyst Used in Two Alternatively-operating UV/photocatalytic Reactors of Waste-air Treating System (교대로 운전되는 두 개의 UV/광촉매반응기로 구성된 폐가스 처리시스템에서의 광촉매의 비활성화 및 재생 특성)

  • Lee, Eun Ju;Chung, Chan Hong;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.584-595
    • /
    • 2021
  • In this study, the correlation between operating stages of waste air-treating system composed of two alternatively-operating UV/photocatalytic reactors, and the deactivation of photocatalyst used in each operating stage, was investigated by instrumental analysis thereon. The repeated deactivation and subsequent re-generation of photocatalyst used in the waste air treating system of previous investigation performed by Lee and Lim (Korean Chem. Eng. Research, 59(4), 574-583(2021)), were characterized on virgin photocatalyst-carrying porous SiO2 media (A4), used photocatalyst-carrying porous SiO2 media (A1, A2 and A3) collected from the corresponding photocatalytic reactor upon 1st, 2nd, and 3rd run, respectively, regenerated photocatalyst-carrying porous SiO2 media upon 1 time-run (AD1) and 3 times regenerated photocatalyst-carrying porous SiO2 media upon 3 time-runs (AD3) by instrumental analysis including BET analysis, SEM, XPS, SEM-EDS and FT-IR. As a result, the proper regeneration-temperature for deactivated photocatalyst to be regenerated several times (more than 3 times), was suggested below 200 ℃. Such temperature of deactivated photocatalyst-regeneration was almost consistent to the one, according to BET analysis, at which tiny nano-pores blocked by adsorbed ethanol-oxidative and degraded intermediates (AEODI), were regenerated to be reopened through almost complete mineralization of AEODI. In particular, the results of XPS analysis indicated an incurrence of insignificant deactivation of photocatalysis upon 1st run of UV/photocatalytic reactor (A or C) of the previous investigation. In addition, the results of XPS analysis were consistent with the experimental results of the previous investigation in that 1) deactivation of photocatalyst incurred during 2nd run of the UV/photocatalytic reactor (A or C) resulted in decreased removal efficiency, by ca. 5% and 5%, of ethanol and hydrogen sulfide, respectively, compared with its 1st run; 2) there was insignificant difference between the removal efficiencies of its 2nd run and 3rd run. Furthermore, the removal efficiencies of ethanol and hydrogen sulfide for hypothetical 4th run of photocatalytic reactor in the previous investigation, using AD3, were expected to decrease, compared with its 3rd run, by much more than those for 2nd run in the previous investigation did, compared with its 1st run.