• 제목/요약/키워드: hydrogen oxide

검색결과 891건 처리시간 0.021초

초고강도 자동차용 강의 환원정전류인가에 따른 산화 거동 변화 연구 (Investigation on the Effects of Hydrogen Charging on Oxidation Behavior of Ultrahigh-Strength Automotive Steels)

  • 하헌영;김혜진;문준오;이태호;조효행;이창근;유병길;양원석
    • Corrosion Science and Technology
    • /
    • 제16권6호
    • /
    • pp.317-327
    • /
    • 2017
  • The change in the oxidation behavior of three types of B-added ultrahigh strength martensitic steels containing Ti and Nb induced by applying constant cathodic current was investigated. In a 3% NaCl+0.3% $NH_4SCN$ solution, the overall polarization behavior of the three alloys was similar, and degradation of the oxide film was observed in the three alloys after applying constant cathodic current. A significant increase in the anodic current density was observed in the Nb-added alloy, while it was diminished in the Ti-added alloy. Both Ti and Nb alloying decreased the hydrogen overpotential by forming NbC and TiC particles. In addition, the thickest oxide film was formed on the Ti-added alloy, but the addition of Nb decreased the film thickness. Therefore, it was concluded that the remarkable increase in the anodic current density of Nb-added alloy induced by applying constant cathodic current density was attributed to the formation of the thinnest oxide film less protective to hydrogen absorption, and the addition of Ti effectively blocked the hydrogen absorption by forming TiC particles and a relatively thick oxide film.

산화-환원 싸이클 조업에 의한 고순도 수소생성 (High Purity Hydrogen Production by Redox Cycle Operation)

  • 전법주;박지훈
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.355-363
    • /
    • 2010
  • High purity hydrogen, 97-99 vol.%, with CO at just ppm levels was obtained in a fixed bed of iron oxide employing the steam-iron cycle operation with reduction at 823K and oxidation in a steam-$N_2$ mixture at 773K TGA experiments indicated that temperature of the reduction step as well as its duration are important for preventing carbon build-up in iron and the intrusion of $CO_2$ into the hydrogen product. At a reduction temperature of 823K, oxide reduction by $H_2$ was considerably faster than reduction by CO. If the length of the reduction step exceeds optimal value, low levels of methane gas appeared in the off-gas. Furthermore, with longer durations of the reduction step and CO levels in the reducing gas greater than 10 vol.%, carbidization of the iron and/or carbon deposition in the bed exhibited the increasing pressure drop over the bed, eventually rendering the reactor inoperable. Reduction using a reducing gas containing 10 vol.% CO and a optimal reduction duration gave constant $H_2$ flow rates and off-gas composition over 10 redox reaction cycles.

고온에서 급속열산화법으로 형성된 탄탈륨산화막의 수소응답특성 (Hydrogen Response Characteristics of Tantalum Oxide Layer Formed by Rapid Thermal Oxidation at High Temperatures)

  • 김성진
    • 전기전자학회논문지
    • /
    • 제27권1호
    • /
    • pp.19-24
    • /
    • 2023
  • 약 1.12 ev의 밴드갭 에너지를 갖는 실리콘은 동작 온도가 250 ℃ 이하로 제한되어, 밴드갭 에너지가 큰 SiC 기판을 이용한 MIS(metal-insulator-semiconductor) 구조의 시료를 제작하여 고온에서 수소 응답 특성을 고찰하였다. 적용된 유전체 박막은 수소가스에 대해 침투성이 강하고 고온에서 안정성을 보이는 탄탈륨 산화막(Ta2O5)으로, 스퍼터링으로 증착된 탄탈륨(Ta)을 900 ℃의 온도에서 급속열산화법(RTO)으로 형성하였다. 이렇게 형성된 탄탈륨 산화막은 TEM, SIMS, 및 누설전류 측정을 통해, 두께, 원소들의 깊이 분포 및 절연특성을 분석하였다. 수소가스 응답특성은 0부터 2,000 ppm의 수소가스 농도에 대해, 상온으로부터 200와 400 ℃의 온도에서 정전용량의 변화로 평가하였다. 그 결과, 시료로부터 감도가 우수하고, 약 60초의 응답 시간을 나타내는 특성을 확인하였다.

산화아연과 단중벽 탄소나노튜브 복합체의 수소가스 감응 특성 (Hydrogen Sensing Properties of ZnO-SWNTs Composite)

  • 정진연;송혜진;강영진;오동훈;정혁;조유석;김도진
    • 한국재료학회지
    • /
    • 제18권10호
    • /
    • pp.529-534
    • /
    • 2008
  • The hydrogen gas sensing properties of a zinc oxide nanowire structure were studied. Porous zinc oxide nanowire structures were fabricated by oxidizing zinc deposited on a single-wall carbon nanotube (SWNT) template. This revealed a porous ZnO-SWNT composite due to the porosity in the SWNT film. The gas sensing properties were compared with those of zinc oxide thin films deposited on SiO2/Si substrates in sensitivity and operating temperature. The composite structure showed higher sensitivity and lower operating temperature than the zinc oxide film. It showed a response even at room temperature while the film structure did not.

페라이트계 금속 산화물 매체 상에서 열화학 메탄 개질 반응 특성 (Reaction Characteristics of Thermochemical Methane Reforming on Ferrite-Based Metal Oxide Mediums)

  • 차광서;이동희;조원준;이영석;김영호
    • 한국수소및신에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.140-150
    • /
    • 2007
  • Thermochemical 2-step methane reforming, involving the reduction of metal oxide with methane to produce syngas and the oxidation of the reduced metal oxide with water to produce pure hydrogen, was investigated on ferrite-based metal oxide mediums. The mediums, CoFZ, CuFZ, or MnFZ, were composed of the mixture of M(M=Co, Cu or Mn)-substituted ferrite as an active component and $ZrO_2$ as a binder, respectively. The WZ medium, composed of the mixture of $WO_3$ and $ZrO_2$, was also prepared to compare. With an addition of $ZrO_2$, the surface area of the mediums was slightly increased and the sintering of active components was greatly suppressed during the reduction. The higher reactivity of the reduced mediums for water splitting was confirmed by the temperature programmed reaction. From the results of the thermochemical 2-step methane reforming, the reactivity of $CH_4$ reduction and water splitting with ferrite-based metal oxide mediums was relatively higher than that with WZ, and the order of reactivity of the mediums was MnFZ>CoFZ>CuFZ>WZ.

Microscopic characterization of pretransition oxide formed on Zr-Nb-Sn alloy under various Zn and dissolved hydrogen concentrations

  • Kim, Sungyu;Kim, Taeho;Kim, Ji Hyun;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.416-424
    • /
    • 2018
  • Microstructure of oxide formed on Zr-Nb-Sn tube sample was intensively examined by scanning transmission electron microscopy after exposure to simulated primary water chemistry conditions of various concentrations of Zn (0 or 30 ppb) and dissolved hydrogen ($H_2$) (30 or 50 cc/kg) for various durations without applying desirable heat flux. Microstructural analysis indicated that there was no noticeable change in the microstructure of the oxide corresponding to water chemistry changes within the test duration of 100 days (pretransition stage) and no significant difference in the overall thickness of the oxide layer. Equiaxed grains with nano-size pores along the grain boundaries and microcracks were dominant near the water/oxide interface, regardless of water chemistry conditions. As the metal/oxide interface was approached, the number of pores tended to decrease. However, there was no significant effect of $H_2$ concentration between 30 cc/kg and 50 cc/kg on the corrosion of the oxide after free immersion in water at $360^{\circ}C$. The adsorption of Zn on the cladding surface was observed by X-ray photoelectron spectroscopy and detected as ZnO on the outer oxide surface. From the perspective of $OH^-$ ion diffusion and porosity formation, the absence of noticeable effects was discussed further.

고온 수전해에 의한 수소 제조 기술 (Hydrogen Production Technology using High Temperature Electrolysis)

  • 홍현선;추수태;윤용승
    • 한국수소및신에너지학회논문집
    • /
    • 제14권4호
    • /
    • pp.335-347
    • /
    • 2003
  • High temperature electrolysis (HTE) can become a key target technology for fulfilling the hydrogen requirement for the future hydrogen economy. This technology is based upon the partial replacement of electricity with heat energy for the electrolysis. Although the current research status of high temperature electrolysis in many countries remains at the small laboratory scale, the technology has great potential for producing hydrogen at a higher efficiency than low-temperature electrolysis (LTE). The efficiency of LTE is not expected to rise above 40%, whereas the efficiency of HTE has been reported to be above 50%. The higher efficiency of HTE would reduce costs by more than 30% compared to LTE. In this study, the technical data regarding the HTE of water and the resulting hydrogen production are reviewed, with an emphasis on the application of high temperature solid electrolyte and oxide electrodes for the HTE process.

연료극 집전체 최적화를 적용한 원통형 고체산화물 연료전지 단전지 성능 향상 (Development of Tubular Solid Oxide Fuel Cells with Advanced Anode Current Collection)

  • 김완제;이승복;송락현;박석주;임탁형;이종원
    • 한국수소및신에너지학회논문집
    • /
    • 제24권6호
    • /
    • pp.480-486
    • /
    • 2013
  • In this study, tubular SOFC unit cell with advanced anode current collector was fabricated to improve the cell performance. First, we prepared two types of single cells having the same manufacture processes such as the same electrolyte, electrode coating condition and sintering processes. And then to compare the developed single cell performance with conventional cells, we changed the anode current collecting methods. From the impedance analysis and I-V curve analysis, the cell performance of advanced cell is much higher than that of conventional cell.

원통형 고체산화물 연료전지 스택 제작 및 성능평가 (Fabrication and Performance Evaluation of Tubular Solid Oxide Fuel Cells Stack)

  • 김완제;이승복;송락현;박석주;임탁형;이종원
    • 한국수소및신에너지학회논문집
    • /
    • 제24권6호
    • /
    • pp.467-471
    • /
    • 2013
  • In present work, optimized the manufacturing process of anode-supported tubular SOFCs cell and stack were studied. For this purpose, we first developed a high performance tubular SOFC cell, and then made electrical connection in series to get high voltage. The gas sealing was established by attaching single cells to alumina jig with ceramic bond. Through these process, we can obtain such high OVP as around 15V, which means that the electrical connection and gas sealing were optimized. Finally we developed a new tubular SOFC stack which shows a maximum power of 65W @ $800^{\circ}C$.

THE EFFECT OF HYDROGEN AND OXYGEN CONTENTS ON HYDRIDE REORIENTATIONS OF ZIRCONIUM ALLOY CLADDING TUBES

  • CHA, HYUN-JIN;JANG, KI-NAM;AN, JI-HYEONG;KIM, KYU-TAE
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.746-755
    • /
    • 2015
  • To investigate the effect of hydrogen and oxygen contents on hydride reorientations during cool-down processes, zirconium-niobium cladding tube specimens were hydrogen-charged before some specimens were oxidized, resulting in 250 ppm and 500 ppm hydrogen-charged specimens containing no oxide and an oxide thickness of $0.38{\mu}m$ at each surface. The nonoxidized and oxidized hydrogen-charged specimens were heated up to $400^{\circ}C$ and then cooled down to room temperature at cooling rates of $0.3^{\circ}C/min$ and $8.0^{\circ}C/min$ under a tensile hoop stress of 150 MPa. The lower hydrogen contents and the slower cooling rate generated a larger fraction of radial hydrides, a longer radial hydride length, and a lower ultimate tensile strength and plastic elongation. In addition, the oxidized specimens generated a smaller fraction of radial hydrides and a lower ultimate tensile strength and plastic elongation than the nonoxidized specimens. This may be due to: a solubility difference between room temperature and $400^{\circ}C$; an oxygen-induced increase in hydrogen solubility and radial hydride nucleation energy; high temperature residence time during the cool-down; or undissolved circumferential hydrides at $400^{\circ}C$.