DOI QR코드

DOI QR Code

THE EFFECT OF HYDROGEN AND OXYGEN CONTENTS ON HYDRIDE REORIENTATIONS OF ZIRCONIUM ALLOY CLADDING TUBES

  • CHA, HYUN-JIN (Dongguk University, College of Energy and Environment) ;
  • JANG, KI-NAM (Dongguk University, College of Energy and Environment) ;
  • AN, JI-HYEONG (Dongguk University, College of Energy and Environment) ;
  • KIM, KYU-TAE (Dongguk University, College of Energy and Environment)
  • Received : 2015.04.04
  • Accepted : 2015.06.26
  • Published : 2015.12.25

Abstract

To investigate the effect of hydrogen and oxygen contents on hydride reorientations during cool-down processes, zirconium-niobium cladding tube specimens were hydrogen-charged before some specimens were oxidized, resulting in 250 ppm and 500 ppm hydrogen-charged specimens containing no oxide and an oxide thickness of $0.38{\mu}m$ at each surface. The nonoxidized and oxidized hydrogen-charged specimens were heated up to $400^{\circ}C$ and then cooled down to room temperature at cooling rates of $0.3^{\circ}C/min$ and $8.0^{\circ}C/min$ under a tensile hoop stress of 150 MPa. The lower hydrogen contents and the slower cooling rate generated a larger fraction of radial hydrides, a longer radial hydride length, and a lower ultimate tensile strength and plastic elongation. In addition, the oxidized specimens generated a smaller fraction of radial hydrides and a lower ultimate tensile strength and plastic elongation than the nonoxidized specimens. This may be due to: a solubility difference between room temperature and $400^{\circ}C$; an oxygen-induced increase in hydrogen solubility and radial hydride nucleation energy; high temperature residence time during the cool-down; or undissolved circumferential hydrides at $400^{\circ}C$.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. R. Singh, R. Kishore, S. Singh, T. Sinha, B. Kashyap, Stressreorientation of hydrides and hydride embrittlement of Zr-2.5 wt% Nb pressure tube alloy, J. Nucl. Mater. 325 (2004) 26-33. https://doi.org/10.1016/j.jnucmat.2003.10.009
  2. H. Chung, Understanding hydride- and hydrogen-related processes in high-burnup cladding in spent-fuel storage and accident situations, in: Proceedings of the International Topical Meeting on Light Water Reactor Fuel Performance, Orlando (FL), 2004, p. 470.
  3. J. Won, M. Kim, K. Kim, Heat-up and cool-down temperaturedependent hydride reorientation behaviors in zirconium alloy cladding tubes, Nucl. Eng. Tech. 46 (2014) 681-688. https://doi.org/10.5516/NET.07.2014.052
  4. J. Won, S. Min, K. Kim, Cooldown-induced hydride reorientation of hydrogen-charged zirconium alloy cladding tubes, Met. Mat. Int. 21 (2015) 31-42. https://doi.org/10.1007/s12540-015-1005-9
  5. S. Min, J.Won, K. Kim, Terminal cool-down temperaturedependent hydride reorientations in ZreNb alloy claddings under dry storage conditions, J.Nucl.Mater. 448 (2014) 172-183. https://doi.org/10.1016/j.jnucmat.2014.02.007
  6. S. Min, M. Kim, K. Kim, Cooling rate- and hydrogen contentdependent hydride reorientation and mechanical property degradation of ZreNb alloy claddings, J. Nucl. Mater. 441 (2013) 306-314. https://doi.org/10.1016/j.jnucmat.2013.06.006
  7. M. Kim, H. Kim, S. Min, K. Kim, Cladding cooling ratedependent hydride reorientation and configuration, Korean J. Met. Mater. 51 (2013) 477-486. https://doi.org/10.3365/KJMM.2013.51.7.477
  8. S. Min, M. Kim, C. Won, K. Kim, Effects of cooling rates on hydride reorientation and mechanical properties of zirconium alloy claddings under interim dry storage conditions, Korean J. Met. Mater. 51 (2013) 487-495. https://doi.org/10.3365/KJMM.2013.51.7.487
  9. R. Marshall, M. Louthan Jr., Tensile properties of Zircaloy with oriented hydrides, Trans. ASM 56 (1963) 693-700.
  10. M. Louthan Jr., R. Marshall, Control of hydride orientation in Zircaloy, J. Nucl. Mater. 9 (1963) 170-184. https://doi.org/10.1016/0022-3115(63)90132-6
  11. S. Hong, K. Lee, Stress-induced reorientation of hydrides and mechanical properties of Zircaloy-4 cladding tubes, J. Nucl. Mater. 340 (2005) 203-208. https://doi.org/10.1016/j.jnucmat.2004.11.014
  12. P. Bouffioux, A. Ambard, A. Miquet, C. Cappelaere, Q. Auzoux, M. Bono, O. Rabouille, S. Allegre, V. Chabretout, C.P. Scott, Hydride Reorientation in M5 Cladding and its Impact on Mechanical Properties, Top Fuel 2013, Charlotte (NC), 2013, p. 879.
  13. R. Marshall, Influence of fabrication history on stressoriented hydrides in Zircaloy tubing, J. Nucl. Mater. 24 (1967) 34-48. https://doi.org/10.1016/0022-3115(67)90078-5
  14. R. Marshall, Control of hydride orientation in Zircaloy by fabrication practice, J. Nucl. Mater. 24 (1967) 49-59. https://doi.org/10.1016/0022-3115(67)90079-7
  15. J. Kearns, C. Woods, Effect of texture, grain size, and cold work on the precipitation of oriented hydrides in Zircaloy tubing and plate, J. Nucl. Mater. 20 (1966) 241-261. https://doi.org/10.1016/0022-3115(66)90036-5
  16. M. Leger, A. Donner, The effect of stress on orientation of hydrides in zirconium alloy pressure tube materials, Can. Metall. Q. 24 (1985) 235-243. https://doi.org/10.1179/cmq.1985.24.3.235
  17. A. McMinn, E. Darby, J. Schofield, The terminal solid solubility of hydrogen in zirconium alloys, in: 12th International Symposium on Zirconium in the Nuclear Industry, Toronto, Canada, 2000, p. 173.
  18. S. Yamanaka, Y. Fujita, M. Uno, M. Katsura, Influence of interstitial oxygen on hydrogen solubility in metals, J. Alloys Compounds 293 (1999) 42-51.
  19. H. Kim, Y. Jeong, K. Kim, The effects of creep and hydride on spent fuel integrity during interim dry storage, Nucl. Eng. Tech. 42 (2010) 249-258. https://doi.org/10.5516/NET.2010.42.3.249
  20. H. Kim, I. Kim, S. Park, J. Park, Y. Jeong, Evaluation of hydride effect on fuel cladding degradation, Kor. J. Met. Mater. 48 (2010) 717-723.
  21. K. Colas, A. Motta, J. Almer, M. Daymond, M. Kerr, A. Banchik, In situ study of hydride precipitation kinetics and re-orientation in Zircaloy using synchrotron radiation, Acta Mater. 58 (2010) 6575-6583. https://doi.org/10.1016/j.actamat.2010.07.018
  22. W. Qin, J. Szpunar, J. Kozinski, J. Kozinski, Hydride-induced degradation of hoop ductility in textured zirconium-alloy tubes: a theoretical analysis,, Acta Mater. 60 (2012) 4845-4855. https://doi.org/10.1016/j.actamat.2012.06.003
  23. H. Chung, Fundamental metallurgical aspects of axial splitting in Zircaloy cladding, in: Proceedings of the International Topical Meeting on Light Water Reactor Fuel Performance, Park City (UT), 2000, p. 325.
  24. P. Vizcaino, P.B. Bozzano, A.V. Flores, A.D. Banchik, R.A. Versaci, R.O. Rios, Hydrogen solubility and microstructural changes in Zircaloy-4 due to neutron irradiation, J. ASTM Int. 8 (2011) 1-20.
  25. M. Puls, Hydrogen-induced Delayed Cracking: 2. Effects of Stress on Nucleation, Growth and Coarsening of Zirconium Hydride Precipitates, AECL-8381, Atomic Energy of Canada, Whiteshell Nuclear Research Establishment, Pinawa, Manitoba (Canada), 1984.
  26. I. Lifshitz, V. Slyozov, Kinetics of diffuse decomposition of supersaturated solid solutions, Soviet Phys. JETP 35 (1959) 331-339.
  27. C. Wagner, Theorie der alterung von niederschlagen durch umlosen (Ostwald-Reifung), Z. Elektrochem 65 (1961) 581-591 [In German].
  28. R. Bourcier, D. Koss, Hydrogen embrittlement of titanium sheet under multiaxial states of stress, Acta Metall. 32 (1984) 2091-2099. https://doi.org/10.1016/0001-6160(84)90188-3
  29. Y. Fan, D. Koss, The Influence of multiaxial states of stress on the hydrogen embrittlement of Zr alloy sheet, Metall. Trans. A 16 (1985) 675-681. https://doi.org/10.1007/BF02814242
  30. D. Northwood, U. Kosasih, Hydrides and delayed hydrogen cracking in zirconium and its alloys, Int. Met. Rev. 28 (1983) 92-121.
  31. G. Itoh, M. Kanno, T. Hagiwara, T. Sakamoto, Embrittlement in an age-hardened 2091 aluminum alloy by exposure at elevated temperatures below the aging temperature, Acta Mater. 47 (3799) (1999) 3799-3809. https://doi.org/10.1016/S1359-6454(99)00243-8
  32. V. Perovic, G. Weatherly, C. Simpson, Hydride precipitation in a/b zirconium alloys, Acta Metall. 31 (1983) 1381-1391. https://doi.org/10.1016/0001-6160(83)90008-1

Cited by

  1. Allowable peak heat-up cladding temperature for spent fuel integrity during interim-dry storage vol.49, pp.8, 2015, https://doi.org/10.1016/j.net.2017.08.012
  2. Terminal solid solubility of hydrogen of optimized-Zirlo and its effects on hydride reorientation mechanisms under dry storage conditions vol.52, pp.8, 2020, https://doi.org/10.1016/j.net.2020.01.022
  3. A Review of Hydride Reorientation in Zirconium Alloys for Water-Cooled Reactors vol.83, pp.10, 2020, https://doi.org/10.1134/s1063778820090197
  4. Stress-induced reorientation of hydrides in Zr-1Nb-0.01Cu cladding tube studied by synchrotron X-ray diffraction and EBSD vol.558, pp.None, 2022, https://doi.org/10.1016/j.jnucmat.2021.153374
  5. Accurate prediction of threshold stress for hydride reorientation in Zircaloy-4 with directly measured interface orientation relationship vol.21, pp.None, 2015, https://doi.org/10.1016/j.mtla.2021.101291