• 제목/요약/키워드: hydrogen generation

검색결과 814건 처리시간 0.024초

과산화수소 발생을 위한 전해셀용 양성자 교환 막의 비교 (The Comparative Study of Different Membranes for Electrolytic Cell for the Hydrogen Peroxide Generation)

  • 유선경;김한주;김태일;;박수길
    • 전기화학회지
    • /
    • 제10권4호
    • /
    • pp.235-238
    • /
    • 2007
  • 과산화수소의 발생은 일반적으로 유기 산화제를 포함한 산업적 프로세스의 넓은 분야에 응용된다. 과산화수소는 펄프와 제지 공업의 기계적, 화학적 처리를 위하여 사용되고 염소를 기초로 둔 화학제품에 알칼리 처리로 사용된다. 본 연구에서는 Nafiom과 러시아 양이온 교환막인 MK-40, 제조된 SPEEK막을 가스확산전극이 포함된 과산화수소 발생용 전해 셀에서 비교 실험한다. 다른 양성자 교환막에 효과에 따른 과산화수소 발생의 전기화학적 셀의 전압과 전류 효율, 에너지 소모를 연구한다.

리니어 수소동력시스템의 연소연구용 급속흡입압축기의 특성 해석 (Analysis on the Characteristics of RICEM for Researching Combustion Characteristics of Linear Hydrogen Power System)

  • 이제홍;김강문;정대용;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.66-73
    • /
    • 2005
  • Hydrogen linear power system is estimated as the next generation power system which can obtain a performance as same as fuel cell. In order to develop Hydrogen combustion power system with high thermal efficiency, it is very important to understand the basic characteristics of hydrogen combustion and establish combustion stabilization technique of its system. In this study, RICEM(Rapid Intake Compression Expansion Machine) for researching of hydrogen combustion linear power system was manufactured and evaluated, and the basic characteristics of linear RICEM were analyzed.

제로에너지단지의 적정 수소 활용 규모 및 운용방식에 관한 연구 (A Comparative Assessment of Hydrogen Facility Installation for Net-Zero Energy District Planning)

  • 김준오;김철희;추소연
    • 신재생에너지
    • /
    • 제19권3호
    • /
    • pp.1-12
    • /
    • 2023
  • This study aims to evaluate the optimal size of the hydrogen facility to be installed in a zero-energy district in terms of load matching and facility efficiency. A mismatch between energy generation and consumption is a common occurrence in zero-energy districts. This mismatch adversely effects the energy grid. However, using an energy carrier such as hydrogen can solve this problem. To determine the optimal size of hydrogen fuel cells to be used on-site, simulation of hydrogen installation is required at both district-and building- levels. Each case had four operating schedules. Therefore, we evaluated eight scenarios in terms of load matching, heat loss, and facility operational efficiency. The results indicate that district-level installation of hydrogen facilities enables more efficient energy use. Additionally, based on the proposed model, we can calculate the optimal size of the hydrogen facility.

고삼(苦參) 발효 추출물의 면역활성에 관한 연구 (Studies on Immuno modulating Acitivity of Fermented Sophorae Radix Extract)

  • 김형석;한효상;이영종
    • 대한본초학회지
    • /
    • 제26권2호
    • /
    • pp.17-23
    • /
    • 2011
  • Objectives : This study aims at examining the effect of the fermentative extract of root of Sophorae Radix on the immuno-modulating activity. Methods : Cell viabilities were measured by MTT assay. Effect of SFS on nitric oxide(NO), hydrogen peroxide production from RAW 264.7 cells was accessed by Griess reagent assay. Effect of SFS on productions of inflammatory cytokines such as TNF-${\alpha}$, IL-6 in LPS-induced RAW 264.7 cells was accessed by a multiplex bead array assay based on xMAP technology. Results : The results of the experiment are as follows. 1. As a result of carrying out MTT assay to check the cellular toxicity of the fermentative extract of Sophorae Radix. There was not any excessive toxicity to the macrophage when the fermentative extract of root of Sophorae Radix was treated in different concentrations. 2. The fermentative extract of Sophorae Radix increased the generation of hydrogen peroxide in the macrophage and significantly restored the suppression of the generation of the hydrogen peroxide in the macrophage induced by LPS. 3. The fermentative extract of Sophorae Radix reduced the generation of NO in the macrophage and significantly suppressed the increase of the generation of NO in the macrophage induced by LPS. 4. The fermentative extract of Sophorae Radix significantly decreased the amount of TNF-${\alpha}$ generated in the macrophage induced by LPS when it was $25{\mu}g/mL$ or higher. Conclusion : These results suggest that SFS has anti-inflammatory moiety related with its inhibition of NO, hydrogen peroxide, TNF-${\alpha}$, IL-6, in macrophage led by LPS.

GT24 가스터빈용 EV 버너의 수소혼소에 따른 질소산화물 배출 특성에 대한 실험적 연구 (An Experimental Study on NOx Emissions with Hydrogen and Natural gas Co-firing for EV burner of GT24)

  • 황정재;이원준;민경욱;강도원;김한석;김민국
    • 한국가스학회지
    • /
    • 제27권4호
    • /
    • pp.85-91
    • /
    • 2023
  • 본 연구에서는 GT24 가스터빈의 1단 연소기인 EV버너를 대상으로 수소연료 혼소에 대한 화염거동, 연소 진동 및 NOx 배출 특성에 대한 실험적 연구를 수행하였다. 수소 혼소율이 증가할수록 NOx 배출 농도가 증가하는 결과를 확인하였다. 이러한 변화는 연료 밀도 변화로 인한 침투깊이 변화, 화염전파속도 증가에 따른 화염위치 변화에 기인한 연료 혼합도 감소와 연소진동으로 인한 시간적 혼합도 섭동 영향이 복합적으로 작용한 결과로 판단되었다. 1.3~3.1bar 범위의 가압 시험을 통해 고압 운전 조건의 NOx 배출 특성을 예측하고 이를 토대로 천연가스용 EV 버너의 수소혼소 한계를 평가하였다.

1kW 고체산화물 연료전지(SOFC) 시스템 설계 및 자열운전 (Design and Self-sustainable Operation of 1 kW SOFC System)

  • 이태희;최진혁;박태성;유영성;남석우
    • 한국수소및신에너지학회논문집
    • /
    • 제20권5호
    • /
    • pp.384-389
    • /
    • 2009
  • KEPRI (Korea Electric Power Research Institute) has studied planar type solid oxide fuel cell (SOFC) stacks using anode-supported cells and kW class co-generation systems for residential power generation. In this work, a 1 kW SOFC system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a SOFC stack made up of 48 cells, a fuel reformer, a catalytic combustor, and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation in that system. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. When the 1 kW SOFC stack was tested using hydrogen at $750^{\circ}C$, the stack power was about $1.2\;kW_e$ at 30 A and $1.6\;kW_e$ at 50 A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about $1.3\;kW_e$ with hydrogen and $1.2\;kW_e$ with city gas respectively. The system also recuperated heat of about $1.1\;kW_{th}$ by making hot water.

저탄장에서의 석탄 자연발화에 관한 수치 해석적 연구 (Numerical Study on Spontaneous Combustion in Coal Stockpile)

  • 홍진표;김재관;지준화;박석운;서동균;이진향
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.721-728
    • /
    • 2017
  • In this work, an one-dimensional analysis on spontaneous combustion in a coal stockpile was conducted using a commercial software $gPROMS^{(R)}$ based on assumption suggested by Arioy and Akgun. According to them, it is assumed that there is temperature difference between the surface of coal particle and the gas surrounded around the particle, and it is also assumed that the velocity of the gas is constant and thus oxygen is fed to the stockpile with same velocity. The higher temperature zone is formed to the surface of the coal stockpile at the initial phase and it became deepen as time is taken. Finally it was found that the temperature difference between coal particle and the gas was calculated as $57^{\circ}C$ and spontaneous combustion have not been occurred during 6 months since coal was piled in the stock.

분류층 석탄가스화기 하부 슬래그 탭 부근의 슬래그 거동 해석 (Analysis of Slag Behavior near the Slag Tap in an Entrained Flow Coal Gasifier)

  • 정재화;지준화;이중원;서석빈;김기태;박호영
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.913-924
    • /
    • 2011
  • A steady-state analysis has been conducted to predict the behavior of the slag layer in the entrained-flow slagging coal gasifier. The analysis takes into consideration the composition dependent slag properties such as density, viscosity, heat capacity, thermal conductivity, and temperature of critical viscosity. The amount of added flux to the design coal and the variation of syngas temperature inside the gasifier have been adopted as calculation parameters. The predicted results are the local thickness of the molten and the solid slag layers, and the slag viscosity and the velocity distribution across the molten slag layer along the gasifier wall near the slag tap.

Development of a Mechanistic Model for Hydrogen Generation in Fuel-Coolant Interactions

  • Lee, Byung-Chul;Park, Goon-Cherl;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제29권2호
    • /
    • pp.99-109
    • /
    • 1997
  • A dynamic model for hydrogen generation by Fuel-Coolant Interactions(FCI) is developed with separate models for each FCI stage, coarse mixing and stratification. The model includes the physical concept of FCI, semi-empirical heat and mass transfer correlation and the concentration diffusion equation with the general non-zero boundary condition. The calculated amount of hydrogen, which is mainly generated in stratification, is compared with the FITS experiments. The model developed in this study shows a good agreement within a range of 10 % fuel oxidation rate and predicts the controlled mechanism of the chemical reaction very well. And this model predicts more accurately than the previous works. It is shown from the sensitivity study that the higher initial temperature of fuel particle is, the larger the reaction rate is. Up to 2700 K of temperature of the particle, the reaction rate increases rapid, which can lead to metal ignition.

  • PDF

고분자 전해질형 연료전지 발전 시스템의 전산모사 (Computer Modeling of the Power Generation System Using Polymer Electrolyte Fuel Cell)

  • 백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제19권5호
    • /
    • pp.460-466
    • /
    • 2008
  • In this study, a computer modeling work has been performed for the power generation system using polymer electrolyte fuel cell with Aspen Plus general purpose chemical process simulator. Stoichiometric reactor module was used for the modeling of reformer for the production of hydrogen. For the modeling of the electrochemical reaction, Gibbs reactor module built-in Aspen Plus was utilized. SRK equation of state model was selected for the proper simulation of the overall fuel cell system.