• Title/Summary/Keyword: hydrogen facility

Search Result 173, Processing Time 0.028 seconds

Effect of Hydrogen on Stainless Steel and Structural Steel Using Electrochemical Charging Facility (전기화학적 장입 설비를 활용한 스테인리스강 및 구조용강의 수소 영향 분석)

  • Ki-Young Sung;Jeong-Hyeon Kim;Jung-Hee Lee;Jung-Won Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.705-713
    • /
    • 2023
  • The phenomenon of abnormal climate conditions resulting from greenhouse gas-induced global warming is increasingly prevalent. To address this challenge, global initiatives are underway to adopt environmentally friendly, zero-emission fuels. In this study, we investigate the hydrogen embrittlement characteristics of materials used for eco-friendly hydrogen storage systems. The effects of hydrogen embrittlement on austenitic stainless steels of the FCC series and structural steel of the BCC series were examined. Initially, test samples of three different steel types were prepared in 2t and 3t sizes, and hydrogen was injected into the specimens using an electrochemical method over a 24-hour period. Subsequently, a universal material testing machine (UTM) was employed to monitor changes in mechanical strength and elongation. The FCC series stainless steels exhibited a tendency for elongation to decrease, indicating low sensitivity to hydrogen. In contrast, the mechanical strength and elongation of the BCC series steel changed significantly upon hydrogen charging, posing challenges for prediction. The results of the present study are expected to serve as a fundamental database for analyzing the impact of hydrogen embrittlement on both FCC and BCC series steel materials.

A Study on Odor Dispersion Prediction of Waste Treatment Facilities Using CFD (CFD를 이용한 쓰레기 처리시설의 악취확산 예측에 관한 연구)

  • Kyung, Seo-Kyung;Kim, Kong-Sook;Kim, Byung-Seon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.342-349
    • /
    • 2009
  • The purpose of this study is to estimate efficiently an odor dispersion from waste treatment facility for a crematory and a neighborhood facility, then propose planning, a location of an opening or the arrangement of the trees. Hence, offer a comfortable environment for a resident. For this, first the research data about estimating odor dispersion from waste treatment facility and odor are analyzed, then research an ingredient, characteristic, a direct effect for human and a method of measurement. Second, with on-site survey, check odorimetry and the source of odor dispersion, then apply this to the boundary condition of CFD simulation. Third, analyse by the hour for the 2008 standard weather data of Cheon-an, then apply summer data that odor dispersion is active, winter data relatively slow and an annual mean velocity and wind to the simulation. Even if a crematory and neighborhood facility located on south and north from waste treatment facility are at the low rate, the south and north wind will be applied to the simulation. Fourth, with CFD simulation result, predict an odor dispersion, then propose a solution which is considered an odor dispersion, a location of an opening and the arrangement of the trees. Consequently, this study will have an effect on an environment of a resident.

  • PDF

Risk Assessment of Tube Trailer Leaks at Hydrogen Charging Station (수소충전소 튜브트레일러 누출에 따른 위험성평가)

  • Park, Woo-Il;Yoon, Jin-Hee;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.57-62
    • /
    • 2021
  • In this study, risk assessment was conducted in case of leakage of storage facilities (tube trailer) using the HyKoRAM program developed through international joint research. The high-pressure gas facilities in the hydrogen filling station are divided into four main categories: storage facilities (tube trailers), processing facilities (compressors), compressed gas facilities, and filling facilities (dispensers). Among them, the design specifications of the tube trailer, which is a storage facility, and the surrounding environmental conditions were reflected to construct an accident scenario with previously occurring accidents and potential accidents. Through this, we identify the risks of storage facilities at hydrogen refueling stations and suggest measures to improve the safety of hydrogen charging stations.

The Study on the Removal of Odor Emitting Environmental Fundamental Facility (환경기초시설에서 발생하는 악취가스 제거에 관한 연구)

  • Lee, Byung-Kwan;Lee, Sang-Hun;Tak, Sung-Je;Lee, Byung-Ki
    • Journal of Climate Change Research
    • /
    • v.8 no.1
    • /
    • pp.51-56
    • /
    • 2017
  • The objective of the research project is to develop the hybrid deodorizer for the removal of residual harmful gases generating during pretreatment process of biogas. This hybrid deodorizer is capable of treating harmful gases that contains hydrogen sulfide ($H_2S$), ammonia ($NH_3$) and other odor substances. This hybrid deodorizer reduced the hydrogen sulfide content from approximately 150~200 ppm to less than 16 ppm. These residual harmful gases were effectively removed in the effluent, achieving up to 97% removal of $H_2S$ and 94% removal of $NH_3$ after treatment using hybrid deodorizer.

An Experimental Study on the FMEA Evaluation of Non-metallic Materials in High-Pressure Hydrogen Facility (고압 수소설비용 비금속부품 소재의 FMEA 평가를 통한 실험적 연구)

  • Ahn, Jeongjin;Kim, Wanjin;Kim, Laehyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.10-17
    • /
    • 2019
  • According to South Korea's policy of supplying eco-friendly hydrogen vehicles, related industries are actively conducting research on the development of hydrogen cars and hydrogen charging station infrastructure. On the other hand, there is a lack of empirical research and assessment of the risk of non-metallic materials (such as liners, seals, gaskets) for classified materials that directly affect the durability and reliability of hydrogen vehicles and hydrogen charging stations. In this study, the risk factors for liners and seals of non-metallic parts used in high-pressure hydrogen installations were derived using FMEA, and the RPN values were calculated by converting the severity, frequency of occurrence and degree of detection into scores. The maximum value of the RPN 600, minimum value 63, average value 278.5 was calculated and periodic control of the liner and seal was identified as important. In addition, through hydrogen soakage and oxygen aging tests for non-metallic rubber products, physical test values that can be used as basic data were presented.

A study on odor and ventilation in waste treatment facilities (폐기물 처리시설에서의 악취 및 환기에 관한 연구)

  • Seo, Byung-Suk;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.28-33
    • /
    • 2020
  • Recently, as the income level and quality of life have improved, the desire for a pleasant environment has increased, and a deodorization plan is required through thorough prevention and diffusion of odorous substances in waste treatment facilities recognized as hateful facilities, appropriate collection, and selection of the right prevention facilities. In this study, a waste disposal facility was modeled and computerized analysis for odor and ventilation analysis was conducted. Numerical analysis of the waste treatment facility was performed at the size of the actual plant. CATIA V5 R16 for numerical model generation and ANSYS FLUENT V.13 for general purpose flow analysis were used as analysis tools. The average air-age of the internal was 329 seconds, and the air-flow velocity was 0.384m/s. The odor diffusion analysis inside the underground pump room showed congestion-free air circulation through streamline distribution and air-age distribution. This satisfies the ASHRAE criteria. In addition, the results of diffusion analysis of odorous substances such as ammonia, hydrogen sulfide, methyl mercaptan and dimethyl sulfide were all expected to satisfy the regulatory standards. Particularly in the case of the waste loading area, the air-flow velocity was 0.297m/s, and the result of meeting the regulatory standards with 0.167ppm of ammonia, 0.00548ppm of hydrogen sulfide, 0.003ppm of methyl mercaptan, and 0.003ppm of dimethyl sulfide was found.

Economic Evaluation on a private electric Generation Application in Unelectrified Remote Islands in Korea (미 전화 도서 자가 발전방식 도입에 따른 경제성 검토)

  • Ahn, Kyo-Sang;Lim, Hee-Chun;Eom, Young-Chang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.4
    • /
    • pp.348-358
    • /
    • 2003
  • According to Electricity Acceleration Law of Rural Area recently, the needs for replacement of a small scale diesel power generation facility which supplied electricity to 10-50 households Remote Islands has been revealed due to high operating and maintenance cost of Diesel Power Generation. Optimization of electric power system for Small Remote Islands must be made considering the economics, reliability and stability as power sources and estimation of total construction cost of those power stations. For its purpose, an assessment of power generation options such as Photovoltaic, Fuel cell, Wind-hybrid was implemented, economic evaluation of power supply shows the Photovoltaic, Fuel Cell for few household's islands and Diesel, Wind-hybrid for more inhabited islands. Power supplied by Diesel shows the best response to increasing electric demand and system reliability even with its lower economic value. Those who are in charge of power planning have to pay attention to system reliability, stability and operating characteristics of candidate's power supply besides its economics.

A Study on the safety measures for the protection of hydrogen cooling system of generator (수소를 냉각매체로 하는 발전기 안전대책에 관한 연구)

  • Lee Choon-Ha;Yuk Hyun-Dai
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.55-61
    • /
    • 2004
  • This paper provided a counter measures against the troubles and accidents that are likely to take place in the power plant using hydrogen gas as a coolant for the cooling system of the generator. Because of the extremely wide flammability limits of hydrogen in comparison to the other flammable gases, the safety measures against the hydrogen accidents is very important to ensure the normal operation of electric-power facility. This study's purpose was a presentation of standard model of safety management of hydrogen equipments in the coal firing power plant such as following items: 1) providing the technical prevention manual of the hydrogen explosions and hydrogen fires occurring in the cooling system of power generator; 2) the selection of explosion-proof equipments in terms of the risk level of operating environment; 3) the establishment of regulations and counter measures, such as the incorporation of gas leakage alarm device, for preventing the accidents from arising, 4) the establishment of safety management system to ensure the normal operation of the power plant.

  • PDF

A Study on the Risk Assessment and Improvement Methods Based on Hydrogen Explosion Accidents of a Power Plant and Water Electrolysis System (발전소 및 수전해 시스템의 수소 폭발 사고 사례 기반 위험성 평가 및 개선 방안 연구)

  • MIN JAE JEON;DAE JIN JANG;MIN CHUL LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.66-74
    • /
    • 2024
  • This study addresses the escalating issue of worldwide hydrogen gas accidents, which has seen a significant increase in occurrences. To comprehensively evaluate the risks associated with hydrogen, a two approach was employed in this study. Firstly, a qualitative risk assessment was conducted using the bow-tie method. Secondly, a quantitative consequence analysis was carried out utilizing the areal locations of hazardous atmospheres (ALOHA) model. The study applied this method to two incidents, the hydrogen explosion accident occurred at the Muskingum River power plant in Ohio, USA, 2007 and the hydrogen storage tank explosion accident occurred at the K Technopark water electrolysis system in Korea, 2019. The results of the risk assessments revealed critical issues such as deterioration of gas pipe, human errors in incident response and the omission of important gas cleaning facility. By analyzing the cause of accidents and assessing risks quantitatively, the effective accident response plans are proposed and the effectiveness is evaluated by comparing the effective distance obtained by ALOHA simulation. Notably, the implementation of these measures led to a significant 54.5% reduction in the risk degree of potential explosions compared to the existing risk levels.