• 제목/요약/키워드: hydrogen facility

검색결과 169건 처리시간 0.026초

Evaluation of Short-Term Exposure Levels on Ammonia and Hydrogen Sulfide During Manure-Handling Processes at Livestock Farms

  • Park, Jihoon;Kang, Taesun;Heo, Yong;Lee, Kiyoung;Kim, Kyungran;Lee, Kyungsuk;Yoon, Chungsik
    • Safety and Health at Work
    • /
    • 제11권1호
    • /
    • pp.109-117
    • /
    • 2020
  • Background: Ammonia and hydrogen sulfide are harmful gases generated during aerobic/anaerobic bacterial decomposition of livestock manure. We evaluated ammonia and hydrogen sulfide concentrations generated from workplaces at livestock farms and determined environmental factors influencing the gas concentrations. Methods: Five commercial swine farms and five poultry farms were selected for monitoring. Real-time monitors were used to measure the ammonia and hydrogen sulfide concentrations and environmental conditions during the manure-handling processes. Monitoring was conducted in the manure storage facility and composting facility. Information on the farm conditions was also collected through interview and walk-through survey. Results: The ammonia concentrations were significantly higher at the swine composting facilities (9.5-43.2 ppm) than at other manure-handling facilities at the swine and poultry farms, and high concentrations of hydrogen sulfide were identified during the manure agitation and mixing process at the swine manure storage facilities (6.9-19.5 ppm). At the poultry manure-handling facilities, the ammonia concentration was higher during the manure-handling processes (2.6-57.9 ppm), and very low hydrogen sulfide concentrations (0-3.4 ppm) were detected. The air temperature and relative humidity, volume of the facility, duration of manure storage, and the number of animals influenced the gas concentrations. Conclusion: A high level of hazardous gases was generated during manure handling, and some levels increased up to risk levels that can threaten workers' health and safety. Some of the farm operational factors were also found to influence the gas levels. By controlling and improving these factors, it would be possible to protect workers' safety and health from occupational risks.

가축분뇨 자원화시설에서 발생되는 암모니아와 황화수소의 계절별 현장 평가 (Seasonal Field Assessment of Odor Emitted from Livestock Manure Composting Facility)

  • 김기연
    • 한국축산시설환경학회지
    • /
    • 제21권2호
    • /
    • pp.41-46
    • /
    • 2015
  • 본 연구의 목적은 가축분뇨 자원화시설에서 배출되는 주요 악취물질을 대상으로 계절별 현장 방문 조사를 통해 전반적인 악취발생 현황을 파악하고 가축분뇨 자원화시설 운용시 효율적으로 적용될 수 있는 악취 저감대책을 설정하기 위한 기초 데이터 구축이다. 횡형 로터리 (Rotary) 교반방식의 퇴비화시설 내부의 암모니아 발생 농도는 봄철은 84.3 (${\pm}15.2$) ppm, 여름철은 115.2 (${\pm}34.7$) ppm, 가을철은 76.2(${\pm}18.9$) ppm, 겨울철은 38.1 (${\pm}10.4$) ppm으로 측정되었다. 분석 결과 여름철이 가장 높은 것으로 나타났고, 다음으로 가을철 > 봄철 > 겨울철인 것으로 조사되었다 (p<0.05). 반면 황화수소 발생 농도는 봄철은 7.46(${\pm}2.24$) ppm, 여름철은 9.42 (${\pm}2.82$) ppm, 가을철은 8.15 (${\pm}3.06$) ppm, 겨울철은 10.18 (${\pm}4.11$) ppm으로 측정되었다. 분석 결과 겨울철이 가장 높은 것으로 나타났고, 다음으로 여름철 > 가을철 > 봄철인 것으로 조사되었으나, 계절별 통계적 차이는 유의하지 않은 것으로 조사되었다 (p>0.05).

국내 수소타운 내 0.1MPa 이하 저압 수소 사용시설의 안전관리 항목 분석 (An Analysis of Safety Management Items for Low Pressure Hydrogen Facility below 0.1MPa in Domestic Hydrogen Town)

  • 이덕권;허두현;이선규;이정운;유근준;이연재;김희식
    • 한국가스학회지
    • /
    • 제19권6호
    • /
    • pp.85-91
    • /
    • 2015
  • 전 세계적으로 수소에너지에 대한 관심이 점차 증가함에 따라 수소 생산, 저장, 운송, 이용 분야에서 응용 기술의 개발이 활발히 진행되고 있다. 국내에서도 울산 수소타운을 조성하여 시범운영 중에 있어 수소에너지 응용처 확대에 대한 가능성을 높이고 있다. 울산 수소타운은 가스 사용 압력에 따라 고압부와 저압부로 구분할 수 있는데 고압부는 '고압가스안전관리법'을 적용하여 안전관리를 하고 있고 저압부는 '수소타운 시범사업의 안전관리에 관한 지침'을 적용하여 운영 중에 있다. 본 논문에서는 울산 수소타운 내 0.1MPa 이하 저압 수소 사용시설의 안전관리 효율성 향상을 위해 저압 수소사용 시설 및 안전관리 항목 분석을 통해 안전관리 방향성을 검토하고 향후 개선 방향을 제시하고자 하였다. 본 연구의 결과를 통해 국내 수소타운 활성화 및 안전 관리 효율성 증대에 도움이 될 수 있을 것으로 기대한다.

수소 취급설비의 폭발위험장소에 관한 연구 (A Study on Explosive Hazardous Areas in Hydrogen Handling Facility)

  • 표돈영;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제30권1호
    • /
    • pp.29-34
    • /
    • 2019
  • Safety of hydrogen handling facilities is needed as supply of hydrogen cars has been expanded recently. In this study, the adequacy of safety regulations of hydrogen handling facilities and the risk of damage with hydrogen leakage were studied. The range of explosion hazard location of the hydrogen filling plant was investigated using the computational fluid dynamics (CFD) method, Explosive hazardous area is influenced by leakage type, hole size and sectional area. When the conditions of KS standard are applied, range explosive hazardous area is expanded 7.05 m, maximum. It is about 7 times larger than exceptional standard of hydrogen station. Meanwhile, distance from leakage point to 25% LEL of hydrogen is investigated 1.6 m. Considering the shape of charging hose, regulation of hydrogen station is appropriate.

Methodological Study on Measurement of Hydrogen Abundance in Hydrogen Isotopes System by Low Resolution Mass Spectrometry

  • Lia, Jin-Ying;Shib, Lei;Hub, Shi-Lin
    • Mass Spectrometry Letters
    • /
    • 제2권1호
    • /
    • pp.1-7
    • /
    • 2011
  • China's rapid economic growth has resulted in significant environmental side effects. Therefore, China has been interested in reducing her dependence on foreign oil and gas by developing technologies needed for hydrogen, in addition to her increasing energy mix of nuclear and renewable energy form, such as solar and wind power. There are three isotopes of hydrogen, i.e. protium (P or H), deuterium (D), and tritium (T). Both deuterium and tritium are important materials in nuclear fuel cycle industry. Tritium is one of the critical radioactive nuclides. Planning for and implementing contamination control as a part of normal operation and maintenance activities is an important function in any hydrogen facility, especially tritium facility. The development of hydrogen isotopes analysis is the key issues in this area. Mass spectrometry (MS) with medium (about 600) and high resolution (> 1,400) is commercially available; however, the routine analysis of hydrogen isotopes is done with low-resolution MS (< 200) in China. This paper summarizes the progress of MS measurement technology for hydrogen isotope abundance in China, focusing on our lab's research program and technical status. An analyzing method has been introduced for accurate measurement of tritium abundance in the H.D.T system by low resolution MAT-253 MS. The quotient of compression ratio coefficient is determined by building up equipment for laboratory-scale preparation of secondary standard gases and by considering the difference in sensitivity between hydrogen isotopes. The results show that the measured value is reproducible within the relative error range of 0.8% for gas samples of different tritium abundance.

과산화수소/케로신 액체로켓엔진의 연소시험 설비 개발에 관한 연구 (A Study of Combustion Test Facility for LRE Using Hydrogen peroxide and Kerosene as Propellant)

  • 최유리;전준수;김영문;고영성;김유;김선진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.29-32
    • /
    • 2009
  • 본 연구는 과산화수소/케로신을 추진제로 사용하는 액체로켓엔진의 연소시험설비 개발에 관한 연구이다. 새로운 연소시험설비 위하여 추력 측정 장치, 추진제 공급라인, 제어 및 계측시스템을 구축하였다. 그리고 연소시험 운용을 위한 시나리오 및 Sequence를 설계하였고 연소시험설비의 안정성을 확인하기 위하여 200N급 액체로켓엔진으로 연소시험을 수행하였다. 연소시험 수행 결과 안정적인 유량공급을 확인 하였고 과산화수소/케로신을 추진제로 사용하는 액체로켓엔진의 연소시험설비 개발이 잘 이루어 졌음을 확인 할 수 있었다.

  • PDF

환원분위기하 석탄회 세슘 반응생성물의 열적 안정성 (Thermal Stability of Cesium Reacted with Fly Ash in Hydrogen Atmosphere)

  • 신진명;김광렬;박장진;신설우
    • 환경위생공학
    • /
    • 제19권4호
    • /
    • pp.1-8
    • /
    • 2004
  • This study has been investigated to analyze the thermal stability of cesium reacted with fly ash with changing mole ratio of Cs/Al in hydrogen atmosphere. When the $CsNO_3$ and fly ash were reacted at $1000^{\circ}C$ in hydrogen atmosphere, cesium $nepheline(CsAlSiO_4)$ Phase began to emerge in addition to $pollucite(CsAlSi_2O_6)$ phase when the cesium loading quantity was greater than $0.32(g-Cs_2O/g-fly\; ash)$. Cesium $nepheline(CsAlSiO_4)$ Phase increased with increasing cesium loading quantity. When cesium trapped on a fly ash was exposed to $1200^{\circ}C$ in hydrogen atmosphere, no weight loss due to the volatilization was shown until the cesium loading quantity was reached at $0.32(g-Cs_2O/g-fly\; ash)$. In the case of the cesium loading quantity of $0.48-0.74(g-Cs_2O/g-fly\;ash)$ in hydrogen atmosphere, the weight loss increased with increasing the cesium loading quantity. This is considered to be due to the cesium $nepheline(CsAlSiO_4)$ whose vapor pressure is higher than that of $pollucite(CsAlSi_2O_6)$.

의약품 제조시설의 포름알데히드가스 훈증살균과 최근 실내무균화방법의 동향

  • 한국공기청정협회
    • 공기청정기술
    • /
    • 제23권3호
    • /
    • pp.34-43
    • /
    • 2010
  • In most productive facility of pharmaceutical companies, the fumigation using formaldehyde gas has been put into operation. Because formaldehyde gas is so bactericidal as to sterilize bacterial spore which can not be sterilized with usual disinfectants, it has been used for fumigation in many facilities such as facility of experimental animals, research institute and productive facility of pharmaceutical companies which are required to be high level of biological clean. However, the use of formaldehyde is recently under the strict management because of its causing of sick house and carcinogenesis. We introduce the conditions of sterilization using formaldehyde gas, the examples of sterilization using formaldehyde gas in a pharmaceutical manufacture and the problems of use of formaldehyde against environments and health. Further, we describe the characteristics and future subjects of the sterilization method using gasified oxidants such as hydrogen peroxide, peracetic acid and chlorine oxide.

  • PDF

슬러지 소각시설 악취 및 환기에 관한 연구 (A Study on the Odor and Ventilation in Sludge Incineration Facilities)

  • 서병석;전용한
    • 대한안전경영과학회지
    • /
    • 제22권2호
    • /
    • pp.7-13
    • /
    • 2020
  • Sludge incineration facilities are socially recognized as a hate facility. Therefore, a careful deodorization plan must be established. Therefore, the incineration facility must conduct research on odor ventilation. In this study, a odor diffusion simulation in an incineration facility was conducted and analyzed. In particular, research was carried out on carry-in rooms, pre-treatment rooms, and storage facilities for crops, which are expected to rapidly spread odor. As a result, ammonia 1.62, hydrogen sulfide 0.63, and acetaldehyde 0.73 were found in the transfer room. In addition, pretreatment rooms and stencil storage facilities were found to be lower than regulatory standards.

Exposure Assessment Study on Lithium-Ion Battery Fire in Explosion Test Room in Battery Testing Facility

  • Mi Sung Jo;Hoi Pin Kim;Boo Wook Kim;Richard C. Pleus;Elaine M. Faustman;Il Je Yu
    • Safety and Health at Work
    • /
    • 제15권1호
    • /
    • pp.114-117
    • /
    • 2024
  • A lithium-ion battery is a rechargeable battery that uses the reversible reduction of lithium ions to store energy and is the predominant battery type in many industrial and consumer electronics. The lithium-ion batteries are essential to ensure they operate safely. We conducted an exposure assessment five days after a fire in a battery-testing facility. We assessed some of the potentially hazardous materials after a lithium-ion battery fire.We sampled total suspended particles, hydrogen fluoride, and lithium with real-time monitoring of particulate matter (PM) 1, 2.5, and 10 micrometers (㎛). The area sampling results indicated that primary potential hazardous materials such as dust, hydrogen fluoride, and lithium were below the recommended limits suggested by the Korean Ministry of Labor and the American Conference of Governmental Industrial Hygienists Threshold Limit Values. Based on our assessment, workers were allowed to return to work.