• Title/Summary/Keyword: hydrogen electrode

Search Result 648, Processing Time 0.038 seconds

A Study on the Thermodynamic and Electrochemical Properties of MmNi5 System Hydrogen Absorbing Alloys Mixed with Nickel Powder (니켈분말 첨가에 따른 MmNi5계 수소저장합금의 열역학 및 전기화학적 특성)

  • Choi, Weon-Kyung;Cho, Tae-Hwan
    • Journal of Hydrogen and New Energy
    • /
    • v.7 no.1
    • /
    • pp.63-69
    • /
    • 1996
  • Effect of nickel powder to added to the hydrogen absorbing alloy electrode of $MmNi_{4.5}-xCoxMn_{0.3}Al_{0.2}$ system alloy was investigated. The addition of nickel powder was effective for the improvement of discharging characteristic. It was found that the discharge capacity was 310mAhig when the alloy negative electrode was mixed $MmNi_{3.75}CO_{0.75}Mn_{0.3}Al_{0.2}$ and nickel powder with a mix of one to three. Still another, we have investigated thermodynamic stability of hydrogen in the alloy negative electrode. As a result, enthalpy of hydrogen and hydrogen equilibrium pressure in the alloy negative electrode were a suitable value to easy hydrogen absorption-desorption.

  • PDF

Measurement of Hydrogen Crossover by Gas Chromatograph in PEMFC (고분자전해질 연료전지에서 기체 크로마토그래프에 의한 수소투과도 측정)

  • Jeong, Jaejin;Jeong, Jaehyeun;Kim, Saehoon;Ahn, Byungki;Ko, Jaijoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.425-429
    • /
    • 2014
  • Until a recent day, degradation of PEMFC MEA(membrane and electrode assembly) has been studied, separated with membrane degradation and electrode degradation, respectively. But membrane and electrode were degraded coincidentally at real PEMFC operation condition. During simultaneous degradation, there was interaction between membrane degradation and electrode degradation. Hydrogen permeability was used often to measure degradation of electrolyte membrane in PEMFC. In case of hydrogen permeability measured by LSV(Linear Sweep Voltammetry) method, the degradation of electrode decrease the value of hydrogen crossover current due to LSV methode's dependence on electrode active area. In this study hydrogen permeability was measured by gas chromatograph(GC) when membrane and electrode degraded at the same time. It was showed that degradation of electrode did not affect the hydrogen permeability measured by GC because of GC methode's independence on electrode active area.

The TRC Test for Cold Crack Susceptibility of Welded Zone for ABS EH32 Steel (인장구속 균열시험에 의한 ABS EH 32강 용접부 저온 균열 감수성 시험)

  • 정수원;박동환;김대헌
    • Journal of Welding and Joining
    • /
    • v.2 no.2
    • /
    • pp.62-69
    • /
    • 1984
  • In this study, cold crack susceptibility of high strength steel (ABS EH32 Steel) welded zone with shielded metal are welding was investigated by tensile restraint cracking test method. Effects of diffusible hydrogen content on root cracking, lower critical stress, crack initiation and fracture mode, hardness value distribution of welded zone and fractograph were mainly investigated. Following conclusions are made: 1. In the view of the lower critical stress level, wet electrode, containing much diffusible hydrogen content shows lower value than dried electrode. 2. Hardness value(Hv 5kg) in Heat Affected Zone of wet electrode is higher than that of dried electrode caused by hydrogen embrittlement. 3. In the case of wet electrode, root crack is initiated and propagated in Heat Affected Zone and then propagated to weld metal, but using of dried electrode, root crack is initiated in Heat Affected Zone and propagated to weld metal without propagating in HAZ. 4. For wet electrode, quasi-cleavage fracture mode is majorly observed on the fracture surface of HAZ and partially of weld metal due to hydrogen embrittlement.

  • PDF

AC Impedance Study of the Electrochemical Behavior of Hydrogen/Oxygen Gas Mixture at Nafion/Catalyst Electrode Interface

  • Song, S.M.;Lee, W.M.
    • Journal of Hydrogen and New Energy
    • /
    • v.11 no.4
    • /
    • pp.179-188
    • /
    • 2000
  • The anodic reaction of hydrogen/oxygen gas mixture at platinum or palladium electrode interfacing with a solid polymer electrolyte was investigated using AC impedance method. The impedance spectrum of the electrode reactions of the mixture depends on the gas composition, electrode roughness, the mode of electrochemical operation and the cell potential. For electrolysis mode of operation, the spectrum taken for the reaction on a rough platinum electrode for the gas mixture revealed clearly that the local anodic reduction of oxygen gas takes place concurrently with the anodic oxidation of hydrogen gas.

  • PDF

The Effects of Electric Field Variation by The Third Electrode on Water Electrophysicochemical Characteristics (제3전극에 의한 전계변화가 수중 전기물리화학적 특성에 미치는 영향)

  • Kim, Jin-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.136-141
    • /
    • 2010
  • In this paper, after the third electrode type oxidant generator which could format non-uniform electric field in water had been manufactured and installed, by direct electrolysis, the effects of the hydrogen potential and oxidation reduction potential characteristics attendant upon electric field change on a higher concentration oxidant generation characteristics were investigated. Consequently, as the third electrode was installed in the middle of two slit electrodes and the polarity of applied power was changed, it was observed that the third electrode system with the positive electrode can generate a higher concentration oxidant, hydrogen potential and oxidation reduction potential as compared with that of the negative electrode. It is because the positive electrode was bombarded mostly energetic electrons and the negative electrode was bombarded mainly by less energetic positive ions.

Fabrication of Pt/Carbon Nanotube Composite Based Electrochemical Hydrogen Sulfide Gas Sensor using 3D Printing (3D 프린팅을 이용한 Pt/Carbon Nanotube composite 기반 전기화학식 황화수소 가스 센서 제작)

  • Yuntae Ha;JinBeom Kwon;Suji Choi;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.290-294
    • /
    • 2023
  • Among various types of harmful gases, hydrogen sulfide is a strong toxic gas that is mainly generated during spillage and wastewater treatment at industrial sites. Hydrogen sulfide can irritate the conjunctiva even at low concentrations of less than 10 ppm, cause coughing, paralysis of smell and respiratory failure at a concentration of 100 ppm, and coma and permanent brain loss at concentrations above 1000 ppm. Therefore, rapid detection of hydrogen sulfide among harmful gases is extremely important for our safety, health, and comfortable living environment. Most hydrogen sulfide gas sensors that have been reported are electrical resistive metal oxide-based semiconductor gas sensors that are easy to manufacture and mass-produce and have the advantage of high sensitivity; however, they have low gas selectivity. In contrast, the electrochemical sensor measures the concentration of hydrogen sulfide using an electrochemical reaction between hydrogen sulfide, an electrode, and an electrolyte. Electrochemical sensors have various advantages, including sensitivity, selectivity, fast response time, and the ability to measure room temperature. However, most electrochemical hydrogen sulfide gas sensors depend on imports. Although domestic technologies and products exist, more research is required on their long-term stability and reliability. Therefore, this study includes the processes from electrode material synthesis to sensor fabrication and characteristic evaluation, and introduces the sensor structure design and material selection to improve the sensitivity and selectivity of the sensor. A sensor case was fabricated using a 3D printer, and an Ag reference electrode, and a Pt counter electrode were deposited and applied to a Polytetrafluoroethylene (PTFE) filter using PVD. The working electrode was also deposited on a PTFE filter using vacuum filtration, and an electrochemical hydrogen sulfide gas sensor capable of measuring concentrations as low as 0.6 ppm was developed.

A Study on Effect of the Shape of Electrodes in Alkaline Water Electrolysis (알카리 수전해에서 전극 형상의 영향에 관한 연구)

  • CHOI, SOOKWANG;KIM, JONGSOO;HAN, JIN MOOK;YUN, SEONG-HO;KIM, SEWOONG;JUNG, YOUNGUAN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.2
    • /
    • pp.121-128
    • /
    • 2017
  • For an investigation on the effect of the shape of electrodes in alkaline water electrolysis, two kinds of stack with circular and square electrode array are used to visualize both for behaviors of hydrogen bubble around the electrodes and for measurements of hydrogen production from these two stacks. The electrolytes for the hydrogen production experiment were applied for 20 wt%, 25 wt%, 30 wt% and 35 wt% of KOH alkaline aqueous solutions. As a result, the adhesion length of bubbles attached around the square electrode in the visualization experiment was found to be 1.7 times longer compared with the attached around the circular electrode. In the hydrogen production experiments, the volume of hydrogen production of the stack by using circular electrode array was approximately 3% more than that of the stack with square electrode array. These observations may be caused by the effect of the bubbles attached to the around the electrodes obstructing mass transfer such as hydrogen exhaust and electrolyte supply.

Development of Bifunctional Electrocatalyst for PEM URFC (고분자 전해질 막을 이용한 일체형 재생 연료전지용 촉매전극 개발)

  • Yim, Sung-Dae;Park, Gu-Gon;Sohn, Young-Jun;Yang, Tae-Hyun;Yoon, Young-Gi;Lee, Won-Yong;Kim, Chang-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.1
    • /
    • pp.23-31
    • /
    • 2004
  • For the fabrication of high efficient bifunctional electrocatalyst of oxygen electrode for PEM URFC (Polymer Electrolyte Membrane Unitized Regenerative Fuel Cell), which is a promising energy storage and conversion system using hydrogen as the energy medium, several bifunctional electrocatalysts were prepared and tested in a single cell URFC system. The catalysts for oxygen electrode revealed fuel cell performance in the order of Pt black > PtIr > PtRuOx > PtRu ~ PtRuIr > PtIrOx, whereas water electrolysis performance in the order of PtIr ~ PtIrOx > PtRu > PtRuIr > PtRuOx ~ Pt black. Considering both reaction modes PtIr was the most effective elctrocatalyst for oxygen electrode of present PEM URFC system. In addition, the water electrolysis performance was significantly improved when Ir or IrOx was added to Pt black just 1 wt.% without the decrease of fuel cell performance. Based on the catalyst screening and the optimization of catalyst composition and loading, the optimum catalyst electrodes for PEM URFC were $1.0mg/cm^2$ of Pt black as hydrogen electrode and $2.0mg/cm^2$ of PtIr (99:1) as oxygen electrode.

Fabrication of Pt-MWNT/Nafion Electrodes by Low-Temperature Decal Transfer Technique for Amperometric Hydrogen Detection

  • Rashid, Muhammad;Jun, Tae-Sun;Kim, Yong Shin
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.18-25
    • /
    • 2014
  • A Pt nanoparticle-decorated multiwall carbon nanotube (Pt-MWNT) electrode was prepared on Nafion by a hot-pressing at relatively low temperature. This electrode exhibited an intricate entangled, nanoporous structure as a result of gathering highly anisotropic Pt-MWNTs. Individual Pt nanoparticles were confirmed to have a polycrystalline face-centered cubic structure with an average crystal size of around 3.5 nm. From the cyclic voltammograms for hydrogen redox reactions, the Pt-MWNT electrode was found to have a similar electrochemical behavior to polycrystalline Pt, and a specific electrochemical surface area of $2170cm^2mg^{-1}$. Upon exposure to hydrogen analyte, the Pt-MWNT/Nafion electrode demon-strated a very high sensitivity of $3.60{\mu}A\;ppm^{-1}$ and an excellent linear response over the concentration range of 100-1000 ppm. Moreover, this electrode was also evaluated in terms of response and recovery times, reproducibility, and long-term stability. Obtained results revealed good sensing performance in hydrogen detection.

Dye Decomposition in Seawater using Electro-Fenton Reaction (전기-펜톤 반응을 이용한 해수 중의 염료 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.29 no.4
    • /
    • pp.383-393
    • /
    • 2020
  • To increase electrolysis performance, the applicability of seawater to the iron-fed electro-Fenton process was considered. Three kinds of graphite electrodes (activated carbon fiber-ACF, carbon felt, graphite) and dimensionally stable anode (DSA) electrode were used to select a cathode having excellent hydrogen peroxide generation and organic decomposition ability. The concentration of hydrogen peroxide produced by ACF was 11.2 mg/L and those of DSA, graphite, and carbon felt cathodes were 12.9 ~ 13.9 mg/L. In consideration of durability, the DSA electrode was selected as the cathode. The optimum current density was found to be 0.11 A/㎠, the optimal Fe2+ dose was 10 mg/L, and the optimal ratio of Fe2+ dose and hydrogen peroxide was determined to be 1:1. The optimum air supply for hydrogen peroxide production and Rhodamine B (RhB) degradation was determined to be 1 L/min. The electro-Fenton process of adding iron salt to the electrolysis reaction may be shown to be more advantageous for RhB degradation than when using iron electrode to produce hydrogen peroxide and iron ion, or electro-Fenton reaction with DSA electrode after generating iron ions using an iron electrode.