• 제목/요약/키워드: hydrogen electric vehicle

검색결과 115건 처리시간 0.019초

통합 연료전지모니터링 시스템 개발 (Development of the Integrated Fuel Cell Monitoring System)

  • 김현준;염상철;안병기;김세훈;금영범
    • 한국수소및신에너지학회논문집
    • /
    • 제26권3호
    • /
    • pp.241-246
    • /
    • 2015
  • The interest of New Renewable Energy is increasing globally because of the increment of the uncertainty for the energy's supply and demand, and the increment of the frequency in weather anomaly and its damages. One of the New Renewable Energies, Hydrogen receives attention as the future energy that can deal with global environment regulation. Fuel Cell Electric Vehicle (FCEV) is an environment-friendly vehicle that uses Hydrogen as fuel. The electric power for FCEV is generated by chemical reaction with Oxygen from the air and Hydrogen. Hyundai Motor Company (HMC) has developed a proprietary fuel cell system since 2005. In 2012, HMC is the first car maker that mass-produces the ix35 FCEV to the worldwide such as North America, Europe, etc. In order to develop and improve the FCEV technology, data acquisition and analysis of the driving vehicle information is essential. Therefore, the monitoring system is developed, which is consist of datalogger, Automatic Vehicle Location (AVL) server and main server. Especially, WCDMA technology is integrated into the system which enables the data analysis without any restriction of time and region. The main function of the system is the analysis of the driving pattern and the component durability, and the safety monitoring. As a result, ix35 FCEV has successfully developed by using the developed monitoring system. The system is going to take an advantage of development in the future FCEV technology.

국내 수소충전소의 적정 용량 분석 (Study on the Optimum Capacity Analysis for Hydrogen Fueling Station in Korea)

  • 한자령;박진모;이영철;김상민;전소현;김형식
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.649-656
    • /
    • 2017
  • At present, hydrogen is emerging as a future energy source based on environment-friendly aspect, creation of new industry, and enhancement of domestic energy security. In accordance with it, the world's leading automobile companies are focusing on the development and commercialization of hydrogen electric vehicle technology, and each country is strengthening its hydrogen fueling station deployment strategy for its own country. Furthermore, the supply of hydrogen fueling stations is actively promoting under national support. More than 500 hydrogen fueling stations are being constructed, operated and planned around the world. The introduction of hydrogen energy is also progressing in Korea, by announcing road-map to supply hydrogen electric vehicles and hydrogen fueling stations by year. However, there is insufficient discussion on the capacity of hydrogen fueling station in Korea. Therefore, this study suggests the optimum capacity of hydrogen fuelling station for domestic hydrogen economy.

수소연료전지자동차용 절연저항 측정시스템 개발에 관한 연구 (Study on Development of the Isolation Resistance Measurement System for Hydrogen Fuel Cell Vehicle)

  • 이기연;김동욱;문현욱;김향곤
    • 전기학회논문지
    • /
    • 제60권5호
    • /
    • pp.1068-1072
    • /
    • 2011
  • Hydrogen Fuel Cell Vehicle(HFCV) is system that uses electrical energy of fuel cell stack to main power source, which is different system with other vehicles that use high-voltage, large-current. Isolation performance of this system which is connected with electrical fire and electrical shock is important point. Isolation resistance of electric installation is divided according to working voltage, it follows criterion more than $100{\Omega}$/VDC (or $500{\Omega}$/VAC) about system operation voltage in a hydrogen fuel cell vehicle. Although measurement of isolation resistance in a hydrogen fuel cell vehicle is two methods, it uses mainly measurement by megger. However, the present isolation resistance measurement system that is optimized to use in electrical facilities is unsuitable for isolation performance estimation of a hydrogen fuel cell vehicle because of limit of maximum short current and difference of measurement resolution. Therefore, this research developed the isolation resistance measurement system so that may be suitable in isolation performance estimation of a hydrogen fuel cell vehicle, verified isolation performance about known resistance by performance verification of laboratory level about developed system, and executed performance verification through comparing results of developed system by performance verification of vehicle level with ones of existing megger. Developed system is judged to aid estimation and upgrade of isolation performance in a hydrogen fuel cell vehicle hereafter.

연료전지 자동차용 수소센서의 히터 조건에 따른 열전달 특성에 관한 연구 (Study on Heat Transfer Characteristics by Heater Conditions of Hydrogen Sensor for Fuel Cell Electric Vehicle)

  • 서호철;박경석
    • 한국자동차공학회논문집
    • /
    • 제21권1호
    • /
    • pp.23-29
    • /
    • 2013
  • In recent years, development of energy conversion systems using hydrogen as an energy source has been accelerated globally. Even though hydrogen is an environment-friendly energy source, safety and effectiveness issues in storage, transportation, and usage of hydrogen should be clearly resolved in every application. Therefore, sensors for detecting hydrogen leakage, especially for fuel cell electric vehicles, should be designed to have much higher resolution and accuracy in comparison with conventional gas sensors. In this study, we conducted to determine the design parameters for the semiconductor hydrogen sensor with optimized sensing conditions under the thermal distribution characteristic and thermal transfer characteristic. The heat generation study on power supply voltage was studied for correlation analysis of thermal energy according to the power supply voltage variation from 1.0 voltage to 10.0 voltage every 0.5 voltage. And we studied for the temperature coefficient of resistance with hydrogen sensor.

수소연료전지자동차 보급을 위한 정부의 역할: 한국과 일본의 사례를 중심으로 (The Role of Government to Supply Fuel Cell Electric Vehicle in Korea and Japan)

  • 손민희;남석우;김경남
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.71-82
    • /
    • 2016
  • A fuel cell electric vehicle (FCEV) could be an alternative solution to gasoline powered vehicles. The Korean and Japanese governments have played the midwifery role in the development of the FCEV industry. This study explores the difference in policy goals for FCEV between the two countries. Koreans recognized that FCEV was innovative technology and put forward the notion of technology pre-occupancy. Whereas, the Japanese government discovered that FCEV was one way to apply hydrogen mechanisms, so they identified the supply of hydrogen as one of the industries of interest, and have played the demiurge role. This study suggests that the role of government is to introduce eco-friendly vehicles, using the cases of Korean and Japanese governments, who introduced FCEV to the world first.

전기차 사용 후 배터리 재사용 산업 육성을 위한 정책 제안 (Policy Suggestion for Fostering the Industry of Using End of Life EV Batteries)

  • 이희동;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제32권4호
    • /
    • pp.263-270
    • /
    • 2021
  • In this study, we proposed the necessity of reusing the battery industry after domestic use, preparing legal arrangements by step for recycling, clarifying responsible materials by processing stage, and establishing infrastructure and screening diagnostic rating system. The purpose of this study is to establish a life cycle integrated management system for electric vehicle batteries and to find suitable ways for improving the lifespan of electric vehicle batteries, reuse, and recycling in stages to avoid other environmental pollution problems due to batteries after using electric vehicles used to reduce environmental pollution due to climate change.

수소 복합스테이션 실증기반 운영데이터 모니터링 분석 연구 (A Study on Analysis of Operation Data Monitoring Based on Demonstration of Hydrogen Refueling Station)

  • 김동환;박송현;구연진;김필종;허윤실
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.505-512
    • /
    • 2019
  • According to the "hydrogen economy roadmap" announced recently by the government, fuel cell electric vehicle diffusion and hydrogen refueling station construction are actively being carried out to prepare for the hydrogen economy era. The station will be expanded by introducing various charging station models such as hydrogen complex charging station, package, and mobile. Accordingly, the study on the safety demonstration of the charging station and related regulations should be compromised. The purpose of this study is to collect monitoring data during charging according to the distinct four seasons in Korea, and to use it as safety demonstration data by analyzing the charging status, charging rate and charging time during charging.

수소 경제를 위한 국가R&D과제에서 연료전지전기차의 지식구조 탐색 (Exploring the Knowledge Structure of Fuel Cell Electric Vehicle in National R&D Projects for the Hydrogen Economy)

  • 최정우;이지연;이병희;김태현
    • 한국콘텐츠학회논문지
    • /
    • 제21권6호
    • /
    • pp.306-317
    • /
    • 2021
  • 미국, 유럽, 중국, 일본 등 주요 선진국은 탄소 경제에서 수소 경제로의 전환을 위해 다양한 수소 경제 정책을 발표하며 연구역량을 집중하고 있다. 우리나라도 이러한 추세에 발맞추어 2019년 초 수소 경제 활성화 로드맵을 발표한 이래로 수소 경제 관련 법안을 마련하고 지원책을 실시하고 있다. 본 연구에서는 국가과학기술지식정보서비스(NTIS)의 국가R&D과제정보 최근 10년치 데이터를 활용해 수소 경제, 그중에서도 전·후방 파급효과가 크다고 할 수 있는 연료전지전기차 관련 R&D 현황과 지식구조를 파악하고자 한다. 연료전지전기차 관련 국가R&D과제(2020년 1월 기준) 1,479개의 원시 데이터를 바탕으로 네트워크 분석 및 텍스트 마이닝을 실시한 결과, 연료전지전기차 분야에서는 수소의 생산, 운반, 저장, 활용의 전 프로세스에 걸친 기술 및 시스템의 연구개발이 활발하게 이루어지고 있는 것으로 나타났다. 본 논문은 해당 연구결과를 통해 현재 연료전지전기차 산업을 선도하고 있는 한국의 수소 경제 관련 정책 수립과 연구개발, 시장 전략에 대해 시사점을 제시한다.

DEVELOPMENT OF FUEL CELL HYBRID ELECTRIC VEHICLE PERFORMANCE SIMULATOR

  • Park, C.;Oh, K.;Kim, D.;Kim, H.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.287-295
    • /
    • 2004
  • A performance simulator for the fuel cell hybrid electric vehicle (FCHEV) is developed to evaluate the potentials of hybridization for fuel cell electric vehicle. Dynamic models of FCHEV's electric powertrain components such as fuel cell stack, battery, traction motor, DC/DC converter, etc. are obtained by modular approach using MATLAB SIMULINK. In addition, a thermodynamic model of the fuel cell is introduced using bondgraph to investigate the temperature effect on the vehicle performance. It is found from the simulation results that the hybridization of fuel cell electric vehicle (FCEV) provides better hydrogen fuel economy especially in the city driving owing to the braking energy recuperation and relatively high efficiency operation of the fuel cell. It is also found from the thermodynamic simulation of the FCEV that the fuel economy and acceleration performance are affected by the temperature due to the relatively low efficiency and reduced output power of the fuel cell stack at low temperature.

수소버스 사용 내압용기 수소검출량 검사방법 개선을 위한 연구 (A Study on the Improvement of Hydrogen Detection Inspection Method of Hydrogen Cylinder on Hydrogen Bus)

  • 김현준;여운석;조현우;이현철;황태준;이호상;류익희;최수광;오영규;박성욱
    • 자동차안전학회지
    • /
    • 제13권1호
    • /
    • pp.51-56
    • /
    • 2021
  • As hydrogen is classified as an eco-friendly fuel, vehicles using hydrogen fuel are being developed worldwide. Vehicle fuel hydrogen is stored in cylinders at 70 MPa, so there is a high risk of explosion. Therefore, it is important to inspect hydrogen cylinders in used-vehicles. This study was conducted to improve the inspection method of the cylinders currently mounted on used-hydrogen buses. The inspection method is an image analysis method using a camera. Calcaulation algorithm was developed to quantitatively chech the amount of hydrogen leakage by the image method. As a result of adding a contact angle element to the calculation algorithm suggested by the GTR regulation and comparing it with the experimental data of the GTR regulation, the algorithm reliability was 94%, which secured similarity.