• 제목/요약/키워드: hydroforming process

검색결과 143건 처리시간 0.021초

하이드로포밍에 의한 튜브 확관에 대한 해석 (Analysis of Tube Expansion by Hydroforming)

  • 이재원;박종진
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2253-2261
    • /
    • 2002
  • Recently the hydroforming technology has drawn a lot of attention because of its capability to produce high quality and light weight parts. In the present study, the tube expansion - one of the simplest hydroforming processes, has been investigated in order to understand fundamental phenomena such as deformation characteristics and effect of process parameters. As a result, the most important process parameters, which determine the state of stress at the expanded zone, were found to be pressure and die displacement. If the stress becomes equi-axial tension at the zone, necking occurs at some distance from the weld line and develops into a crack along the axial direction. Some aspects of mechanical property measurements as well as distributions of hardness and microstructure are also discussed in this paper.

하이드로포밍을 이용한 대형차 앞차축 형상최적화에 관한 연구 (A Study on Rigid Front Axle Shape Optimization of a Commercial Vehicle by Hydforming Process)

  • 장종민;김윤규;허주행;나상묵
    • 대한기계학회논문집A
    • /
    • 제33권3호
    • /
    • pp.231-236
    • /
    • 2009
  • Recently, The Hydroforming technology has recognized general technique in manufacture industry. Especially automotive industry, It has applied to increase strength, and decrease weight, cost and part number. The rigid axle suspension type is widely used for truck and bus in commercial vehicles due to simplicity. To develop the hydroforming rigid axle, it is necessary to estimate of the characteristics of front suspension from the design process. In this study, the characteristics estimation of the hydroforming rigid axle is preformed using Finite Element Analysis and apply to shape optimization.

Air Bulging을 이용한 열간 알루미늄 성형에 관한 연구 (Study on Al Hot Forming using Air Bulging)

  • 박동환;강성수;김병년
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.145-147
    • /
    • 2009
  • The benefits of hydroforming technology are known as weight and cost savings through part consolidation and reduced post-forming processes such as welding and piercing. Hydroforming technology has some weaknesses in terms of process cycle times. But, as the hydraulic system and process designs are continuously developed, the cycle time is also reduced to acceptable and competitive levels. Hot air bulging is one of recently developed hydroforming techniques. Hot air bulging in order to further extend the forming degrees of Al lightweight material is investigated. A heated tube is placed in a heated die and sealed at the ends by sealing cylinders. The tube is subsequently expanded against the die cavity wall by internal pressure provided by air medium. The result of this study shows that axial feeding speed and air pressure have an effect on formability of Al air bulging at elevated temperature.

  • PDF

알루미늄 관재의 액압성형성에 미치는 열처리의 영향 (Effect of Heat Treatments on the Hydroformability of Aluminum Tubes)

  • 이문용;강창룡
    • 열처리공학회지
    • /
    • 제17권3호
    • /
    • pp.146-150
    • /
    • 2004
  • Because of the social needs for energy saving and the rigid environmental regulation, the development of light materials and new economical manufacturing technologies have been actively investigated. Recently, the hydroforming of high strength aluminum tube has attracted great interest due to its good strength-to-weight ratio, which could play an important role in lightweighting of automobile. However, the limited formability of high strength aluminum alloys is considered to hinder the active application of the hydroforming process. In this paper, the hydroformability of aluminum tubes with different heat treatments was investigated as the basic research of the hydroforming process for the high strength aluminum tubes.

하이드로 포밍 공정의 동특성 해석 및 시뮬레이션 (Dynamic Modeling and Simulation of a Hydro-forming Process)

  • 이우호;조형석
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.122-132
    • /
    • 1999
  • This study describes a dynamic model of the hydroforming process which is used for precision forming of sheet metals. To help the controller design for the control of the forming pressure needed for this process as well as to investigate the effect of system parameters on the dynamic behavior, dynamic modeling is performed with emphasis on hydraulic servo system which actuates the forming machine. Since the model contains several unknown parameters, these were estimated via a least square parameter identification method. Based upon the identified model, a series of simulations were performed for various operating conditions. The results were compared with those of the experiments to verify the validity of the proposed model. The comparison study shows that the proposed dynamic model can describe dynamic behavior of the forming pressure of the hydroforming process to desirable accuracy.

  • PDF

Hydroforming Simulation of High-strength Steel Cross-members in an Automotive Rear Subframe

  • Kim, Kee-Joo;Sung, Chang-Won;Baik, Young-Nam;Lee, Yong-Heon;Bae, Dae-Sung;Kim, Keun-Hwan;Won, Si-Tae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.55-58
    • /
    • 2008
  • Hydroforming is a forming technology in which a steel tube is set in a die and formed to fit a specified shape by applying hydraulic pressure from inside the tube while also applying force in the tube axial direction (axial feed). In present study, the entire design process chain for an automotive cross-member was simulated and developed using hydroforming technology on high-strength steel. The part design stage required a feasibility study. The process was designed using computer-aided design techniques to confirm the actual hydroformability of the part in detail. The possibility of using hydroformable cross-member parts was examined using cross-sectional analyses, which were essential to ensure the formability of the tube material for each forming step, including pre-bending and hydroforming. The die design stage included all the components of a prototyping tool. Press interference was investigated in terms of geometry and thinning.

관재 액압성형에 의한 성형성 및 성형품 특성에 관한 실험적 연구 (Experimental Studies on Formability and Characteristics of Tube Hydroforming)

  • 조완제;손현성;박춘달;김영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.54-57
    • /
    • 2001
  • Hydroforming is core production techniques for the super light weight and high safety of the vehicle body. In order to establish and understand hydroforming, the tube hydroforming simulator which could control an axial compression and high internal pressure with computer operation was developed in tube bulging. This paper presents experimental investigation for process parameters, such as Internal pressure and axial compression. In addition, the mechanical properties, such as strain hardening and energy absorption ability of hydroformed part, is discussed.

  • PDF

축대칭 튜브 하이드로포밍 공정의 유한요소 시뮬레이션 (Finite Element Simulation of Axisymmeric Tube Hydroforming Processes)

  • 김용석;금영탁
    • 소성∙가공
    • /
    • 제11권1호
    • /
    • pp.75-83
    • /
    • 2002
  • Recently, the hydroforming process is widely applied to the automotive industry and rapidly spreaded to other industries. In this paper, An implicit finite element formulation for simulating axisymmetric tube hydroforming processes is performed. In order to describe normal anisotropy of the tube, Hill's non-quadratic yield function is employed. The frictional contact between die and tube and the frictionless contact between tube and fluid are considered using the mesh-normal vectors computed from the finite element mesh of the tube. The complete set of the governing relations comprising equilibrium and interfacial equations is linearized for Newton-Raphson procedure. In order to verify the validity of the developed finite element formulation, the axisymmetric tube bulge test is simulated and the simulation results are compared with experimental measurements. In a simulation of stepped circular tube hydroforming processes, an optimal hydraulic pressure curve is pursued by considering simultaneously internal pressures and axial forces.

Hydroforming을 이용한 Radiator Support Member의 제조기술에 관한 연구 (A Study on Radiator Support Member Manufacturing Technology by Hydroforming)

  • 손성만;이문용;이상용;조완제
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.44-48
    • /
    • 2001
  • Tube hydroforming technology has increased dramatically, mainly by automotive industry in europe and the americas. It is required tube formability, optimized with regard to tribological factors and specially designed die and presses. In this process has many important parameters as expansion ratio of a tube, axial feeding, internal pressure and preforming low pressure. The following paper discusses to combine forming factors and expectation of manufacture problem by hydroforming of automotive radiator support member.

  • PDF

소성불안정성에 의한 관재 하이드로포밍 공정에서의 터짐 불량 예측 (A Prediction of Bursting Failure in Tube Hydroforming Process Based on Plastic Instability)

  • 김상우;김정;박훈재;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.210-213
    • /
    • 2004
  • Based on plastic instability, analytical prediction of bursting failure on tube hydroforming processes under combined internal pressure and independent axial feeding is carried out. Bursting is irrecoverable phenomenon due to local instability under excessive tensile stresses. In order to predict the bursting failure, three different classical necking criteria such as diffuse necking criterion for sheet and tube, local necking criterion for sheet are introduced. The incremental theory of plasticity fur anisotropic material is adopted and then the hydroforming limit and bursting failure diagram with respect to axial feeding and hydraulic pressure are presented. In addition, the influences of the material properties such as anisotropy parameter, strain hardening exponent on bursting pressure are investigated. As results of the above approach, the hydroforming limit in view of bursting failure is verified with experimental results.

  • PDF