• 제목/요약/키워드: hydrodynamic interactions

검색결과 111건 처리시간 0.022초

해양플랜트에 병렬 계류된 LNG 운반선의 거동에 슬로싱이 미치는 영향 (The Effects of Sloshing on the Responses of an LNG Carrier Moored in a Side-by-side Configuration with an Offshore Plant)

  • 이승재
    • 한국해양공학회지
    • /
    • 제24권5호
    • /
    • pp.16-21
    • /
    • 2010
  • During the loading/offloading operation of a liquefied natural gas carrier (LNGC) that is moored in a side-by-side configuration with an offshore plant, sloshing that occurs due to the partially filled LNG tank and the interactive effect between the two floating bodies are important factors that affect safety and operability. Therefore, a time-domain software program, called CHARM3D, was developed to consider the interactions between sloshing and the motion of a floating body, as well as the interactions between multiple bodies using the potential-viscous hybrid method. For the simulation of a floating body in the time domain, hydrodynamic coefficients and wave forces were calculated in the frequency domain using the 3D radiation/diffraction panel program based on potential theory. The calculated values were used for the simulation of a floating body in the time domain by convolution integrals. The liquid sloshing in the inner tanks is solved by the 3D-FDM Navier-Stokes solver that includes the consideration of free-surface non-linearity through the SURF scheme. The computed sloshing forces and moments were fed into the time integration of the ship's motion, and the updated motion was, in turn, used as the excitation force for liquid sloshing, which is repeated for the ensuing time steps. For comparison, a sloshing motion coupled analysis program based on linear potential theory in the frequency domain was developed. The computer programs that were developed were applied to the side-by-side offloading operation between the offshore plant and the LNGC. The frequency-domain results reproduced the coupling effects qualitatively, but, in general, the peaks were over-predicted compared to experimental and time-domain results. The interactive effects between the sloshing liquid and the motion of the vessel can be intensified further in the case of multiple floating bodies.

비정수압 수치모형을 이용한 다공성 구조물의 유동에 관한 수치적 연구 (A Numerical Study on Flow in Porous Structure using Non-Hydrostatic Model)

  • 신충훈;윤성범
    • 한국해안·해양공학회논문집
    • /
    • 제30권3호
    • /
    • pp.114-122
    • /
    • 2018
  • 본 연구는 다공성 구조물과의 파랑의 상호 작용을 수치모의하기 위한 비정수압 수치모형인 SWASH를 소개한다. 이 수치모형은 ${\sigma}$-좌표계에 Volume Averaged Reynolds Averaged Navier-Stokes(VARANS)을 지배방정식으로 다공성 매체에서의 유동을 계산한다. 다공성 매체에서의 유동을 고려하기 위해 사용된 경험적 저항 계수는 보정 작업이 필요하다. 본 연구에서는 수치모형에 사용된 경험적 저항 계수를 다공성 매체를 통과하는 댐 붕괴 실험과 다공성 구조물과 고립파의 상호 작용에 대한 실험을 이용하여 보정 및 검증하였다. 실험 결과와 수치실험 결과는 비교적 잘 일치하는 것으로 나타났다. 또한 비정수압 수치모형인 SWASH가 VOF 접근법을 기반으로 하는 3차원 다공성 유동 모델보다 계산상 훨씬 더 효율적이라는 것이 확인되었다.

지하수위 변화에 따른 호안 주변 지반내의 흐름특성 (Pore flow Characteristics in Seabed around Dike Due to Variation of Ground Water Level)

  • 김창훈;김도삼;허동수
    • 한국해안해양공학회지
    • /
    • 제19권5호
    • /
    • pp.408-417
    • /
    • 2007
  • 최근, 해수욕장으로서의 기능 창출 뿐만 아니라 해안공간의 이용 및 개발에 따른 자연해변의 소실을 대체할 수 있는 인공해변이 건설되고 있다. 그리고, 파랑작용에 의한 매립토사의 유출로부터 인공해변을 보호하기 위한 구조물이 필요하며, 일반적으로 호안이 주로 건설된다. 해저지반 상부에 건설되는 호안의 안정성을 위하여 필히 검토되어야 할 사항 중의 하나가 호안 배후의 지하수위 거동이다. 그러나, 비선형파랑과 지하수위의 거동특성이 인공해변의 토사유출 및 구조물의 안정성에 중요한 요소로 작용함에도 불구하고 이에 대한 연구는 거의 수행되지 않았다. 본 연구에서는 비선형파랑과 호안 및 지하수위로 인한 흐름간의 동적 상호작용을 살펴보기 위하여 정수위와 지하수위와의 차이를 고려할 수 있는 수치파동수로를 개발하였다. 개발된 수치파동수로를 이용하여, 지하수위 변화가 호안 주변 지반내의 수리학적 특성에 미치는 영향을 살펴보았고, 지하수위의 변화에 따른 파동장 및 간극수 흐름, 간극수압 및 와도를 수치적으로 재현하였다. 결과로부터 지하수위의 변화에 따른 호안 주변 지반내의 수리학적 특성들이 어떻게 영향을 받는지 알 수 있었다.

전단유동에서 자성사슬의 거동에 대한 직접수치해석 (DIRECT NUMERICAL SIMULATION OF MAGNETIC CHAINS IN SIMPLE SHEAR FLOW)

  • 강태곤
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.88-92
    • /
    • 2009
  • When exposed to uniform magnetic fields externally applied, paramagnetic particles acquire dipole moments and the induced moments interacting with each other lead to the formation of chainlike structures or clusters of particles aligned with the field direction. A direct simulation method, based on the Maxwell stress tensor and a fictitious domain method, is applied to solve flows with magnetic chains in simple shear flow. We assumed that the particles constituting the chains are paramagnetic, and inertia of both flow and magnetic particles is negligible. The numerical scheme enables us to take into account both hydrodynamic and magnetic interactions between particles in a fully coupled manner, enabling us to numerically visualize breakup and reformation of the chains by the combined effect of the external field and the shear flow. Simple shear flow with suspended magnetic chains is solved in a periodic domain for a given magnetic field. Dynamics of interacting magnetic chains is found to be significantly affected by a dimensionless parameter called the Mason number, the ratio of the viscous force to the magnetic force in the shear flow. The effect of particle area fraction on the chain dynamics is investigated as well.

  • PDF

Formation and evolution of mini halos around a dwarf galaxy sized halo - Candidate sites for the primordial globular clusters

  • Chun, Kyungwon;Shin, Jihye;Kim, Sungsoo S.
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.34.2-34.2
    • /
    • 2015
  • We aim to investigate the formation of primordial globular clusters (GCs) in the isolated dwarf galaxy (${\sim}10^{10}M_{sun}$) with cosmological zoom-in simulations. For this, we modified cosmological hydrodynamic code, GADGET-3, in a way to include the radiative heating/cooling that enables gas particles cool down to T~10K, reionization (z < 8.9) of the Universe, UV shielding ($n_{shield}$ > $0.014cm^{-3}$), and star formation. Our simulation starts in a cubic box of a side length 1Mpc/h with 17 million particles from z = 49. The mass of each dark matter (DM) and gas particle is $M_{DM}=4.1{\times}10^3M_{sun}$ and $M_{gas}=7.9{\times}10^2M_{sun}$, respectively, thus the GC candidates can be resolved with more than hundreds particles. We found the following results: 1) mini halos with the more interactions before merging into the main halo form the more stars and thus have the higher star mass fraction ($M_{star}/M_{total}$), 2) the mini halos with the high $M_{star}/M_{total}$ can survive longer and thus spiral into closer to the galactic center, 3) the majority of them spiral into bulge, but some of them can survive until the last as baryon-dominated system, like the GC.

  • PDF

다방향 불규칙파중의 TLP의 동적응답해석 (주파수영역 해석) (Dynamic Response Analysis of Tension Leg Platforms in Multi-directional Irregular Waves (Frequency Domain Analysis))

  • 구자삼;조효제;이창호
    • 한국해양공학회지
    • /
    • 제8권1호
    • /
    • pp.23-32
    • /
    • 1994
  • A numerical procedure is described for simultaneously predicting the motion and structural responses of tension leg platforms (TLPs) in multi-directional irregular waves. The developed numerical approach is based on a combination of a three dimensional source distribution method, the finite element method for structurally treating the space frame elements and a spectral analysis technique of directional waves. The spectral description for the linear responses of a structure in the frequency domain is sufficient to completely define the responses. This is because both the wave inputs and the responses are stationary Gaussian ran dom process of which the statistical properties in the amplitude domain are well known. The hydrodynamic interactions among TLP members, such as columns and pontoons, are included in the motion and structural analysis. The effect of wave directionality has been pointed out on the first order motion, tether forces and structural responses of a TLP in multi-directional irregular waves.

  • PDF

Analytical Research of Topside Installation in Mating phase with Crane Vessel

  • Lee, Jong-Hyun
    • 한국해양공학회지
    • /
    • 제25권4호
    • /
    • pp.1-6
    • /
    • 2011
  • The installation of a topside structure can be categorized into the following stages: start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the module onto the floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with a significant wave height (1.52m). The effects of the hydrodynamic interactions between the heavy lifting vessel and the spar hull during the lowering and mating stages are considered. The internal forces caused by the load transfer and ballasting are derived for the mating phases. The results of the internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of the pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the mating phases, the internal force induced pitch motion is too small to have this influence. However, the effect of the internal force on the wave-induced heave responses in the mating phases is noticeable in the irregular sea condition because transfer mass-induced draught changes for the floating structure are observed to have higher amplitudes than the external force induced responses. The impacts of the module on the spar hull in the mating phase are investigated.

Dynamic Analysis of Topside Module in Lifting Installation Phase

  • Lee, Jong-Hyun
    • 한국해양공학회지
    • /
    • 제25권4호
    • /
    • pp.7-11
    • /
    • 2011
  • The installation phase for a topside module suggested can be divided into 9 stages, which include start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the topside module from a transport barge to a crane vessel takes place in the first three stages, from start to lifting, while the transfer of the module onto a floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with significant wave height (1.52m), with suggested force equilibrium diagrams. The effects of the hydrodynamic interactions between the crane vessel and barge during the lifting stage have been considered. The internal forces caused by the load transfer and ballasting are derived for the lifting phases. The results of these internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the lifting phases, the internal force induced pitch motion is too small to show its influence. However, the effect of the internal force on the wave-induced heave responses in the lifting phases is noticeable in the irregular sea condition because the transfer mass-induced draught changes in the floating structure are observed to have higher amplitudes than the external force induced responses.

조류와 파랑 중에서의 TLP의 동적구조응답해석 (A Dynamic structural response analysis of tension leg platforms in current and waves)

  • 이승철;구자삼;하영록;조효제
    • 동력기계공학회지
    • /
    • 제16권1호
    • /
    • pp.65-71
    • /
    • 2012
  • A numerical procedure is described for predicting the dynamic structural responses of tension leg platforms(TLPs) in current and waves. The developed numerical approach is based on a combination of the three dimensional source distribution method and the dynamic structural analysis method, in which the superstructure of the TLPs is assumed to be flexible instead of rigid. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in the dynamic structural analysis. The equations of motion of a whole structure are formulated using element-fixed coordinate systems which have the origin at the nodes of the each hull element and move parallel to a space-fixed coordinate system. The dynamic structural responses of a TLP were analyzed in the case of including the current or not including the one in waves and the effects of current on the TLP were investigated.

A Study of Environmental Effects on Galaxy Spin Using MaNGA Data

  • Lee, Jong Chul;Hwang, Ho Seong;Chung, Haeun
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.47.2-47.2
    • /
    • 2017
  • We investigate the environmental effects on galaxy spin using the sample of ~1100 galaxies from the first public data of MaNGA integral field unit survey. We determine the spin parameter ${\lambda}_{Re}$ of galaxies by analyzing the two-dimensional stellar kinematic measurements within the effective radius, and study its dependence on the large-scale (background mass density determined with 20 nearby galaxies) and small-scale (distance to and morphology of the nearest neighbor galaxy) environments. We first examine the mass dependence of galaxy spin, and find that the spin parameter decreases with stellar mass at log ($M_{\ast}/M_{\odot}$) > 10, consistent with previous studies. We then divide the galaxies into three subsamples using their stellar masses to minimize the mass effects on galaxy spin. The spin parameter of galaxies in each subsample does not change with the background density, but do change with the distance to and morphology of the nearest neighbor. The spin parameter increases when late-type neighbors are within the virial radius, and decreases when early-type neighbors are within the virial radius. These results suggest that the large-scale environments hardly affect the galaxy spin, but the effects of small-scale environments such as hydrodynamic galaxy-galaxy interactions are substantial.

  • PDF