• Title/Summary/Keyword: hydrodynamic interactions

Search Result 110, Processing Time 0.027 seconds

Fundamentals of Particle Fouling in Membrane Processes

  • Bhattacharjee Subir;Hong Seungkwan
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • The permeate flux decline due to membrane fouling can be addressed using a variety of theoretical stand-points. Judicious selection of an appropriate theory is a key toward successful prediction of the permeate flux. The essential criterion f3r such a decision appears to be a detailed characterization of the feed solution and membrane properties. Modem theories are capable of accurately predicting several properties of colloidal systems that are important in membrane separation processes from fundamental information pertaining to the particle size, charge, and solution ionic strength. Based on such information, it is relatively straight-forward to determine the properties of the concentrated colloidal dispersion in a polarized layer or the cake layer properties. Incorporation of such information in the framework of the standard theories of membrane filtration, namely, the convective diffusion equation coupled with an appropriate permeate transport model, can lead to reasonably accurate prediction of the permeate flux due to colloidal fouling. The schematic of the essential approach has been delineated in Figure 5. The modern approaches based on appropriate cell models appear to predict the permeate flux behavior in crossflow membrane filtration processes quite accurately without invoking novel theoretical descriptions of particle back transport mechanisms or depending on adjust-able parameters. Such agreements have been observed for a wide range of particle size ranging from small proteins like BSA (diameter ${\~}$6 nm) to latex suspensions (diameter ${\~}1\;{\mu}m$). There we, however, several areas that need further exploration. Some of these include: 1) A clear mechanistic description of the cake formation mechanisms that clearly identifies the disorder to order transition point in different colloidal systems. 2) Determining the structure of a cake layer based on the interparticle and hydrodynamic interactions instead of assuming a fixed geometrical structure on the basis of cell models. 3) Performing well controlled experiments where the cake deposition mechanism can be observed for small colloidal particles (< $1\;{\mu}m$). 4) A clear mechanistic description of the critical operating conditions (for instance, critical pressure) which can minimize the propensity of colloidal membrane fluting. 5) Developing theoretical approaches to account for polydisperse systems that can render the models capable of handing realistic feed solutions typically encountered in diverse applications of membrane filtration.

Rotation of galaxies and the role of galaxy mergers

  • Choi, Hoseung;Yi, Sukyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2016
  • Recent integral-field spectrograph surveys have found that similar-looking early type galaxies have wide range of rotational properties (Emsellem et al. 2007). This finding initiated a new point of view to the galaxies; rotation of galaxy as the first parameter of galaxy classification (Emsellem et al. 2011, Cappellari et al. 2011, for example). Some theoretical studies tried to address the origin of galaxy rotation. Idealized galaxy merger simulations have shown that galaxy-galaxy interactions have significant effects on the rotation of galaxies. Cosmological simulations by Naab et al. 2014 also added some more insights to the rotation of galaxies. However, previous studies either lack cosmological background or have not enough number of samples. Running a set of cosmological hydrodynamic zoom-in simulations using the AMR code RAMSES(Teyssier 2002). we have constructed a sample of thousands of galaxies in 20 clusters. Here we present a kinematic analysis of a large sample of galaxies in the cosmological context. The overall distribution of rotation parameter of simulated galaxies suggests a single peak corresponding to fast rotating galaxies. But when divided by mass, we find a strong mass dependency of galaxy rotation, and massive galaxies are distinctively slow rotating. The cumulated effective of mergers seems to neutralize galaxy rotation as suggested by previous studies (Khochfar et al. 2011, Naab et al. 2014, and Moody et al. 2014). This is consistent with the fact that massive galaxies tend to rotate more slowly after numerous mergers. However, if seen individually, merger can either increase or decrease galaxy rotation depending on mass ratio, orbital parameter, and relative rotation axis of the two galaxies. This explains the existence of some non-slow rotating massive early type galaxies.

  • PDF

Effects of Polymer Adsorption on Stabilities and CMP Performance of Ceria Abrasive Particles

  • Shimono Norifumi;Kawaguchi Masami;Koyama Naoyuki
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.112-117
    • /
    • 2006
  • In this paper we present that the effects of polymer adsorption on stabilities and CMP performance of ceria abrasive particles. Characterization of ceria abrasive particles in the presence of poly(vinyl pyrrolidone) (PVP) was performed by the measurements of adsorbed amounts of PVP, average sizes, and the back scattering intensities of the ceria abrasive particles as functions of PVP molecular weight and PVP concentration. The ceria abrasive particles in the presence of PVP were used to polish $SiO_2\;and\;Si_3N_4$ films deposited on Si wafers in order to understand the effect of PVP adsorption on chemical mechanical polishing (CMP) performance, together with ceria abrasive particles without PVP. Adsorption of PVP on the ceria abrasive particles enhanced the stability of ceria abrasive particles due to steric stabilization of the thick adsorbed layer of PVP. Removal rates of the deposited $SiO_2\;and\;Si_3N_4$ films by the ceria abrasive particles in the presence of PVP were much lower than those in the absence of PVP and their magnitudes were decreased with an increase in the concentration of free PVP chains in the dispersion media. This suggests that the CMP performance in the presence of PVP could be mainly controlled by the hydrodynamic interactions between the adsorbed PVP chains and the free ones. Moreover, the molecular weight dependence of PVP on the removal rates of the deposited films was hardly observed. On the other hand, high removal rate selectivity between the deposited films in the presence of PVP was not observed.

A Study on Friction Loss of Engine using Microfluidics Approach (미세유동의 경계면 특성을 적용한 엔진 마찰 손실 연구)

  • Park, Cho Hee;Kim, Bo Hung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1035-1042
    • /
    • 2014
  • Reducing the friction of engine parts is an important issue in engine design. The loss of energy in the piston assembly due to mechanical friction ranges from 40 to 55%, and there is an increase in the total energy of about 5% if the friction of the piston can be removed. In order to reduce the friction loss at the level of each engine part, it is necessary to perform a comparative analysis with other engines to determine the important factors affecting the energy loss. Several studies have been performed to analyze the lubrication based on hydrodynamic modeling, since a piston lubrication system has dimensions in the nanoscale to microscale domain. Therefore, it is necessary to determine the correlations between the molecular and continuum systems. In this study, we investigated the friction changes due to the various interactions between molecules in the wall/fluid interface, where a microscopic movement of the oil film occurs along the cylinder liner of the engine.

Application of mesh-free smoothed particle hydrodynamics (SPH) for study of soil behavior

  • Niroumand, Hamed;Mehrizi, Mohammad Emad Mahmoudi;Saaly, Maryam
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-39
    • /
    • 2016
  • The finite element method (FEM), discrete element method (DEM), and Discontinuous deformation analysis (DDA) are among the standard numerical techniques applied in computational geo-mechanics. However, in some cases there no possibility for modelling by traditional finite analytical techniques or other mesh-based techniques. The solution presented in the current study as a completely Lagrangian and mesh-free technique is smoothed particle hydrodynamics (SPH). This method was basically applied for simulation of fluid flow by dividing the fluid into several particles. However, several researchers attempted to simulate soil-water interaction, landslides, and failure of soil by SPH method. In fact, this method is able to deal with behavior and interaction of different states of materials (liquid and solid) and multiphase soil models and their large deformations. Soil indicates different behaviors when interacting with water, structure, instrumentations, or different layers. Thus, study into these interactions using the mesh based grids has been facilitated by mesh-less SPH technique in this work. It has been revealed that the fast development, computational sophistication, and emerge of mesh-less particle modeling techniques offer solutions for problems which are not modeled by the traditional mesh-based techniques. Also it has been found that the smoothed particle hydrodynamic provides advanced techniques for simulation of soil materials as compared to the current traditional numerical methods. Besides, findings indicate that the advantages of applying this method are its high power, simplicity of concept, relative simplicity in combination of modern physics, and particularly its potential in study of large deformations and failures.

Effects of Wind Stress Curl, Topography, and Stratification on the Basin-scale Circulations in a Stratified Lake (바람의 회전응력, 지형, 그리고 성층화가 성층 호수의 물 순환에 미치는 영향)

  • Chung, Se-Woong;Schladow, S.G.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.53-53
    • /
    • 2015
  • Basin-scale motions in a stratified lake rely on interactions of spatially and temporally varying wind force, bathymetry, density variation, and earth's rotation. These motions provide a major driving force for vertical and horizontal mixing of inorganic and organic materials, dissolved oxygen, storm water and floating debris in stratified lakes. In Lake Tahoe, located between California and Nevada, USA, basin-scale circulations are obviously important because they are directly associated with the fate of the suspended particulate materials that degrade the clarity of the lake. A three-dimensional hydrodynamic model, ELCOM, was applied to Lake Tahoe to investigate the underlying mechanisms that determine the characteristics of basin-scale circulations. Numerical experiments were designed to examine the relative effects of various mechanisms responsible for the horizontal circulations for two different seasons, summer and winter. The unique double gyre, a cyclonic northern gyre and an anti-cyclonic southern gyre, occurred during the winter cooling season when wind stress curl, stratification, and Coriolis effect were all incorporated. The horizontal structure of the upwelling and downwelling formed due to basin-scale internal waves found to be closely related to the rotating direction of each gyre. In the summer, the spatially varying wind field and the Coriolis effect caused a dominant anti-cyclonic gyre to develop in the center of the lake. In the winter, a significant wind event excited internal waves, and a persistent (2 week long) cyclonic gyre formed near the upwelling zone. Mechanism of the persistent cyclonic gyre is explained as a geostrophic circulation ensued by balancing of the baroclinc pressure gradient (or baroclinic instability) and Coriolis effect. Topographic effect, examined by simulating a flat bathymetry with constant depth of 300m, was found to be significant during the winter cooling season but not as significant as the wind curl and baroclinic effects.

  • PDF

Aerodynamic behaviour of double hinged articulated loading platforms

  • Zaheer, Mohd Moonis;Hasan, Syed Danish;Islam, Nazrul;Aslam, Moazzam
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.17-42
    • /
    • 2021
  • Articulated loading platforms (ALPs) belongs to a class of offshore structures known as compliant. ALP motions have time periods falling in the wind excitation frequency range due to their compliant behaviour. This paper deals with the dynamic behavior of a double hinged ALP subjected to low-frequency wind forces with random waves. Nonlinear effects due to variable submergence, fluctuating buoyancy, variable added mass, and hydrodynamic forces are considered in the analysis. The random sea state is characterized by the Pierson-Moskowitz (P-M) spectrum. The wave forces on the submerged elements of the platform's shaft are calculated using Morison's Equation with Airy's linear wave theory ignoring diffraction effects. The fluctuating wind load has been estimated using Ochi and Shin wind velocity spectrum for offshore structures. The nonlinear dynamic equation of motion is solved in the time domain by the Wilson-θ method. The wind-structure interactions, along with the effect of various other parameters on the platform response, are investigated. The effect of offset of aerodynamic center (A.C.) with the center of gravity (C.G.) of platform superstructure has also been investigated. The outcome of the analyses indicates that low-frequency wind forces affect the response of ALP to a large extent, which otherwise is not enhanced in the presence of only waves. The mean wind modifies the mean position of the platform surge response to the positive side, causing an offset. Various power spectral densities (PSDs) under high and moderate sea states show that apart from the significant peak occurring at the two natural frequencies, other prominent peaks also appear at very low frequencies showing the influence of wind on the response.

Prediction of Oil Outflows from Damaged Ships using CFD Simulations (손상 선박의 기름 유출량 예측을 위한 CFD 시뮬레이션)

  • Moon, Yo-Seop;Park, Il-Ryong;Kim, Je-In;Suh, Seong-Bu;Lee, Seung-Guk;Choi, Hyuek-Jin;Hong, Sa-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.394-405
    • /
    • 2022
  • This paper presents the numerical estimation results of oil outflows from damaged single-hull and double-hull ships by using computational fluid dynamics (CFD) simulations. A CFD method for multi-phase flow analysis was used, and the effects of numerical parameters on oil flows was investigated. Numerical simulations were conducted to predict the changes in oil outflows under various damage conditions owing to grounding or collision accidents and verified through available experimental results. The present numerical results showed a good agreement with the experimental results according to the geometrical characteristics of single and double hulls. In particular, the oil outflows from double hulls accompanying complex interactions between water and oil were reasonably predicted a shown in the experiment. This study established a reliable CFD technique necessary for estimating the oil outflows of damaged ships.

Effects of streambed geomorphology on nitrous oxide flux are influenced by carbon availability (하상 미지형에 따른 N2O 발생량 변화 효과에 대한 탄소 가용성의 영향)

  • Ko, Jongmin;Kim, Youngsun;Ji, Un;Kang, Hojeong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.917-929
    • /
    • 2019
  • Denitrification in streams is of great importance because it is essential for amelioration of water quality and accurate estimation of $N_2O$ budgets. Denitrification is a major biological source or sink of $N_2O$, an important greenhouse gas, which is a multi-step respiratory process that converts nitrate ($NO_3{^-}$) to gaseous forms of nitrogen ($N_2$ or $N_2O$). In aquatic ecosystems, the complex interactions of water flooding condition, substrate supply, hydrodynamic and biogeochemical properties modulate the extent of multi-step reactions required for $N_2O$ flux. Although water flow in streambed and residence time affect reaction output, effects of a complex interaction of hydrodynamic, geomorphology and biogeochemical controls on the magnitude of denitrification in streams are still illusive. In this work, we built a two-dimensional water flow channel and measured $N_2O$ flux from channel sediment with different bed geomorphology by using static closed chambers. Two independent experiments were conducted with identical flume and geomorphology but sediment with differences in dissolved organic carbon (DOC). The experiment flume was a circulation channel through which the effluent flows back, and the size of it was $37m{\times}1.2m{\times}1m$. Five days before the experiment began, urea fertilizer (46% N) was added to sediment with the rate of $0.5kg\;N/m^2$. A sand dune (1 m length and 0.15 m height) was made at the middle of channel to simulate variations in microtopography. In high- DOC experiment, $N_2O$ flux increases in the direction of flow, while the highest flux ($14.6{\pm}8.40{\mu}g\;N_2O-N/m^2\;hr$) was measured in the slope on the back side of the sand dune. followed by decreases afterward. In contrast, low DOC sediment did not show the geomorphological variations. We found that even though topographic variation influenced $N_2O$ flux and chemical properties, this effect is highly constrained by carbon availability.

Experimental Study on the Hydrodynamic Dispersion of Contaminants in Geologic Media : Adsorption and Diffusion of Sr and Cr-EDTA in Granitic Rocks (수리지질계에서 지질매체에 따른 오염물질의 수리분산에 관한 실험적 연구 : 화강암질암에서 Sr과 Cr-EDTA의 흡착 및 확산에 관한 연구)

  • Chang, Ho-Wan;Lee, Kwang-Sik
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.2
    • /
    • pp.105-112
    • /
    • 1994
  • To investigate the migration behavior of contaminants in rocks. adsorption and diffusion experiments for Sr as a sorbing contaminant and for Cr-EDTA as a non-sorbing contaminant were carried out on granitic rocks. The Sr adsorption on separated minerals and crushed rocks tends to slightly increase with increasing pH. It also greatly decreases with the increase of ionic strength in NaCl solution. Among separated minerals, biotite and sericite have adsorbed much more amount of Sr than other rock-forming minerals, such as quartz, plagioclase, and potassic feldspar, because the specific surfaces and cation exchange capacities of phyllosilicates are generally much greater than those of the other rock-forming minerals. The intrinsic diffusion coefficients of Cr-EBTA for granitic rocks differ little from those of Sr. This indicates that they are independent of water-rock interactions. Experimental data show that the intrinsic diffusion coefficients are positively correlated with the porosities of the rocks. They are close to the theoretically predicted values, especially in pre-steady state diffusion region, with the increase of rock sample thickness.

  • PDF