• Title/Summary/Keyword: hydrodynamic coefficient

Search Result 268, Processing Time 0.023 seconds

A Computational Method of Wave Resistance of Ships in Water of Finite Depth (유한수심에서의 조파저항계산에 관하여)

  • S.J. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.66-72
    • /
    • 1992
  • A computational method of the Michell integral for water of finite depth is developed and the method makes use of the expansion of the hull form by the Legendre polynomial in both the longitudinal and the vertical directions. The wave resistance coefficient is given as a quadruple summation of the product of the shape factor and the hydrodynamic factor. The shape factor depends only upon the geometry of the hull form, and the hydrodynamic factor upon the depth-based Froude number and the ratios of the water depth and the draft to the ship length. Example calculations are done for the Wigley parabolic hull and the Series 60 $C_B$ 0.6, and the comparison of our results with the existing experimental data is shown.

  • PDF

Hydrodynamic characteristics for flow around wavy wings with different wave lengths

  • Kim, Mi Jeong;Yoon, Hyun Sik;Jung, Jae Hwan;Chun, Ho Hwan;Park, Dong Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.447-459
    • /
    • 2012
  • The present study numerically investigates the effect of the wavy leading edge on hydrodynamic characteristics for the flow of rectangular wings with the low aspect ratio of 1.5. Five different wave lengths at fixed wavy amplitude have been considered. Numerical simulations are performed at a wide range of the angle of attack ($0^{\circ}{\leq}{\alpha}{\leq}40^{\circ}$) at one Reynolds number of $10^6$. The wavy wings considered in this study did not experience enough lift drop to be defined as the stall, comparing with the smooth wing. However, in the pre-stall region, the wavy wings reveal the considerable loss of the lift, compared to the smooth wing. In the post-stall, the lift coefficients of the smooth wing and the wavy wings are not much different. The pressure coefficient, limiting streamlines and the iso-surface of the spanwise vorticity are also highlighted to examine the effect of the wave length on the flow structures.

An Experimental Study of the Submerged Depth Effect on the Manoeuvrability in a Horizontal Plane of an Underwater Vehicle (수중운동체의 잠수심도에 따른 수평면내 조종성능 변화에 대한 실험적 연구)

  • Seol, Dong-Myung;Rhee, Key-Pyo;Yeo, Dong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.551-558
    • /
    • 2005
  • In this paper, horizontal manoeuvrability of an underwater vehicle near free surface was investigated. Planar Motion Mechanism(PMM) tests were performed at the shallow depth within 4.5 times of vehicle's diameter. Hydrodynamic coefficients related to the horizontal movement were estimated from the measured data using Least SQuare(LS) method and analyzed at each submerged depth. Furthermore, horizontal dynamic stability, trajectory of turning and zigzag test were investigated for the various depths. As underwater vehicle is positioned nearer to the free surface, forces increase and moment decreases. Tested model was found to be stable only at the depth 0.5 times of vehicle's diameter.

On the Nonlinear Hydrodynamic Forces due to Large Amplitude Forced Oscillations (대진폭강제동요시(大振幅强制動搖時)의 비선형유체력(非線型流體力)에 관한 연구(硏究))

  • J.H.,Hwang;Y.J.,Kim;S.Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.1-13
    • /
    • 1986
  • The nonlinear hydrodynamic forces acting on a two-dimensional circular cylinder, oscillating with large amplitude in the free surface, are calculated by using the Semi-Lagrangian Time-Step-ping Method used by O.M. Faltinsen. In present calculation the position and the potential value of free surface are calculated using the exact kinematic and dynamic free surface boundary condition. At each time step an integral equation is solved to obtain the value of potential and normal velocity along the boundaries, consisting of both the body surface and the free surface. Some effort was devoted to the elimination of instability arising in the range of high frequency. Numerical simulations were performed up to the 3rd or 4th period which seems to be enough for the transient effect to die out. Each harmonic component and time-mean force are obtained by the Fourier transform of forces in time domain. The results are compared with others' experimental and theoretical results. Particularly, the calculation shows the tendency that the acceleration-phase 1st-harmonic component(added mass) increases as the motion amplitude increases and a reverse tendency in the velocity-phase 1st-harmonic component(damping coefficient). The Yamashita's experimental result also shows the same tendency. In general, the present result show relatively good agreement with the Yamashita's experimental result except for the time-mean force.

  • PDF

Reflection and Transmission Coefficients for Rubble Mound Breakwaters in Busan Yacht Harbor

  • Park, O Young;Dodaran, Asgar Ahadpour;Bagheri, Pouyan;Kang, Kyung Uk;Park, Sang Kil
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.90-94
    • /
    • 2013
  • This paper reports the results obtained for there flection and transmission coefficients on rubble mound breakwaters in Busan Yacht Harbor. A2D physical model test was conducted in the wave flume at the Coastal Engineering Research Laboratory at Pusan National University, Busan, South Korea. In this study, physical model tests were completed to further our understanding of the hydrodynamic processes that surround a rubble mound structure subjected to irregular waves. In particular, the reflection and transmission coefficients, as well as the spectrum transformation, were analyzed. This analysis suggests that with an increase in wave height around a rubble mound, the reflection coefficient drastically increases at each water level (HHW or MSL or LLW). Moreover, when the water level changes from HHW to LLW, the reflection coefficient is suddenly reduced. A further result of the analysis is that the transmission coefficient strongly drops away from the rear of the structure. Finally, in regard to the rubble mound breakwater in Busan Yacht Harbor, a consideration of the reflection and transmission coefficients plays an important role in the design.

A Study on Slip Behavior of Fiber Preform by High Speed Resin Flow in High Pressure Resin Transfer Molding (고압 RTM 공정에서 고속 수지 유동에 의한 섬유 보강재의 변형 거동에 관한 연구)

  • Ahn, Jong-Moo;Seong, Dong-Gi;Lee, Won-Oh;Um, Moon-Kwang;Choi, Jin-Ho
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • This paper presents the slip behavior of composite fabrics by high speed resin flow in high pressure resin transfer molding. In order to observe the fiber deformation behavior, we constructed the measuring equipment for friction coefficient between fiber and mold, and the monitoring system for deformation of fiber preform in high-pressure RTM process. Coulomb friction coefficient and hydrodynamic friction coefficient between fiber preform and mold were measured and the external force induced by fluid flow causing the deformation of fiber preform was measured. Friction force calculated by friction coefficient and the external force upon fiber deformation were compared, which showed that preform deformation occurred when the external force was bigger than the friction force. The slip behavior of the fiber preform was mainly influenced by the volume fraction of fiber preform and the friction coefficient.

Soil Water and Nutrient Movement Model Under Different Soil Water Conditions -I. Determination of Retardation and Hydrodynamic Dispersion Coefficient of Solute of an Unsaturated Sandy Loam Soil (토양수분(土壤水分) 분포(分布)에 따른 토양내(土壤內) 양수분(養水分) 이동(移動) 모형(模型) -I. 불포화(不飽和) 토양(土壤)에서 용질(溶質)의 이동지연(移動遲延)과 수리동적(水理動的) 분산계수(分散係數)의 측정(測定))

  • Jung, Yeong-Sang;Woo, Deog-Ki;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 1990
  • Retardation and hydrodynamic dispersion coefficient necessary for model of water and solute movement in a soil were determined for horizontal soil column with different initial soil water conditions. The soil columns were compacted with sandy loam soil. The bulk density was $1,350+50kg/m^3$, and initial water contents were 0.05, 0.08 and 0.14. Advancement of 0.05% $CaSO_4$ solution was used as the standard and advancements of 0.5% KCl, $CaCl_2$ and $KH_2PO_4$ were compared. Retardation of non-reactive $Cl^-$ was related with the initial soil water content, ${\theta}n$, as ${\theta}/({\theta}-{\theta}n)$, and anion exclusion was ignored. Retardations of active $K^+$, $Ca^{{+}{+}}$ and $H_2PO_4{^-}$ were related as 1/(R+1) $^*{\theta}/({\theta}-{\theta}n)$, in which R was retardation coefficient. Measured R was 0.64 for $K^+$, 0.80 for $Ca^{{+}{+}}$ and 2.6 for $H_2PO_4{^-}$, respectively. Calculated R using Langmuir adsorption isotherm showed fair degree of applicability. Soil water diffusivity, $D({\theta}),m^2/sec$, calculated for different initial water content showed unique function as $$log(D({\theta}))=13.448{\theta}-9.288$$ Hydrodynamic dispersion coefficient of $Cl^-$ above soil water content 0.36 was similar to soil water diffusivity and decreased to near self diffusion coefficient at soil water content near 0.2. Those of $K^+$, $Ca^{{+}{+}}$ $H_2PO_4{^-}$ at soil water content of 0.38 were $5.5{\times}10^{-6}$, $2.4{\times}10^{-6}$ and $7.1{\times}10^{-7}m^2/sec$ and decreased rapidly with decreasing soil water content lower than 0.36.

  • PDF

An Experimental Study on Characteristics of Hydrodynamic Forces Acting on Unmanned Undersea Vehicle at Large Attack Angles (대각도 받음각을 갖는 무인잠수정에 작용하는 동유체력 특성에 관한 실험적 연구)

  • Bae, Jun-Young;Kim, Jeong-Jung;Sohn, Kyoung-Ho
    • Journal of Navigation and Port Research
    • /
    • v.35 no.3
    • /
    • pp.197-204
    • /
    • 2011
  • The authors adopt the Unmanned Undersea Vehicle(UUV), the shape of which is like a manta. They call here it Manta UUV. Manta UUV has been designed from the similar concept of the UUV called Manta Test Vehicle(MTV), which was originally built by the Naval Undersea Warfare Center of USA(Lisiewicz and French, 2000; Simalis et al., 2001; U.S. Navy, 2004). The present study deals with the effect of Reynolds numbers on hydrodynamic forces acting on Manta UUV at large angles of attack. The large angles of attack cover the whole range of 0 to ${\pm}$ 180 degrees in horizontal plane and in vertical plane respectively. Static test at large attack angles has been carried out with two Manta UUV models in circulating water channel. The authors assume that the experimental results of hydrodynamic forces (lateral force, yaw moment, vertical force and pitch moment) are analyzed into two components, which are lift force component and cross-flow drag component. First of all, Based on two dimensional cross-flow drag coefficient at 90 degrees of attack angle, the cross-flow drag component at whole range of attack angles is calculated. Then the remainder is assumed to be the lift force component. The only cross-flow drag component is assumed to be subject to Reynolds number.entstly the authors suggest the methodology to predict hydrodynamic derivertives acting on the full-scale Manta UUV.

A Study on the Migration Characteristics of Cs-137 in a Packed Column (충전층에서의 세슘-137의 이동특성에 관한 연구)

  • Lee, Jae-Owan;Cho, Won-Jin;Han, Kyung-Won;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.20-28
    • /
    • 1990
  • In this study the migration experiment using packed column with crushed tuff was conducted as a basic research to develop migration model of radionuclides through geologic media. The main emphasis was put on evaluating the validity of migration models. For this, two models were introduced: one is the model which is based on the assumption of instantaneous equilibrium reaction and the other the model based on kinetic process such as intraparticle diffusion. The coefficient of hydrodynamic dispersion in packed column was determined using iodine as nonsorbing tracer. The hydrodynamic dispersion coefficient, D$_{L}$ was shown to be 0.11$\times$10$^{-2}$ $\textrm{cm}^2$/min under the condition of the column porosity of 0.483 and the average water velocity of 0.915$\times$10$^{-2}$ cm/min. The distribution coefficient, Kd of Cs-137 on crushed tuff was 11.3 cc/g at the concentration of 2$\times$10$^{-6}$ M and the temperature of 2$0^{\circ}C$. The breakthrough curve of Cs-137 through packed column was shown to have an asymmetric curve in which long trailing tail appears at the end part of the curve. The results obtained from the comparison of introduced models with experimental data indicated that the mass transfer model with intraparticle diffusion as rate-controlling step simulated the behaviors of Cs-137 migration more adequately, when compared with the bulk reaction model in which the assumption of instantaneous equilibrium reaction was maded. Consequently, the intraparticle diffusion was found to be an important factor in the migration of Cs-137 through packed column.n.

  • PDF

A Study on Course Stability in Accordance with Configuration of Ships (선형에 따른 선박의 침로 안정성에 관한 연구)

  • 권종호
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.2
    • /
    • pp.97-114
    • /
    • 1986
  • Ship's maneuverability is very important factor in safe ship handling and economical ship operation. Steering characteristics are consisted of course stability and maneuverability. Today in many advanced ship-building countries, they study ship's course stability, using model ship tests, such as straight line tests, rotating arm tests and Planar Motion Mechanism (PMM) etc., in tow in tanks. It is the purpose of this paper to provide ship's handlers with better understanding of steering characteristics and to help them in safe controlling and manevering . In this paper, the author simulated response of various vessels, running straight course with constant speed, and they are disturbed by small external disturbance of one degree yaw angle with no angular velocity . The author used the hydrodynamic derivtives resulted at tests of Davidson's laboratory in Stevens Institute of Technology, New Jersey, U.S.A. Course stability was evaluated and analyzed in various respects, such as block coefficient, ratio of ship's length to beam, draft and rudder area ratio etc. The obtained results are as follows : (1) The ship's course stability is affected by magnitude of block coefficient greatly. In case that the block coefficient is more than 0.7, the deviation varies at nearly same rate but the requistite time to reach the steady course is different. (2) The ship's course stability is affected by magnitude of L/B. When the dimensionless time reaches about 3, the deviation and requisite time to reach the steady course are influenced nearly same. After the dimensionless time is about 3, they change on invariable ratio. (3) The effect to course stability by L/T and RA' can be neglected. (4) The reason why thy VLCC and container feeder vessel are unstable on their course is that their block coefficient is generally more than 0.8 and the ratio of ship's length to beam is about 6.0.

  • PDF