• Title/Summary/Keyword: hydrochloric acid (HCl)

Search Result 215, Processing Time 0.021 seconds

Investigating the Efficiency of Formic Acid and Hydrochloric Acid in Weak Acid Hydrolysis for Myoglobin

  • Jihyun Paek;Hyojin Hwang;Yeoseon Kim;Dabin Lee;Jeongkwon Kim
    • Mass Spectrometry Letters
    • /
    • v.14 no.2
    • /
    • pp.48-55
    • /
    • 2023
  • This study compares the efficiency of weak acid hydrolysis (WAH) using formic acid (FA) and hydrochloric acid (HCl) in the analysis of myoglobin peptides. WAH using 2% and 5% formic acid resulted in the identification of 32 peptides, with varying degrees of cleavage at the C-terminus of aspartic acid residues. HCl WAH with different concentrations demonstrated an increase in the total number of identified peptides but a decrease in fully cleaved peptides as the HCl concentration increased. Notably, deamidation was observed during HCl WAH but not in FA WAH. The addition of HCl WAH after FA WAH provided a similar pattern to HCl WAH, with slightly higher levels of hydrolysis. These findings highlight distinct cleavage patterns and deamidation effects between FA and HCl in the context of WAH.

Effect of Hydrochloric Acid, Sulfuric Acid and Enzymes on the Hydrolysis of Marine Products. (1) Effect of hydrochloric acid on the hydrolysis of dried cuttlefish, sardine, shrimp, sea mussel and undaria (水産物의 鹽酸, 黃酸, 酵素에 依한 加水分解에 關한 硏究 (第一報) 鹽酸에 依한 加水分解)

  • Lee, Sang-Tai;Song, Ki-Moo
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.85-87
    • /
    • 1957
  • We have studied on the effect of hydrochloric acid on the hydrolysis of dried cuttlefish, sardine, shrimp, sea mussel and undaria taking various concentration of acid, heating at various periods at constant temperatures and under atmospheric pressure following results were obtained. 1. The addition of HCl increases hydrolysis ratio of marine products rapidly, having maximum point of its ratio at 30% of dried cuttlefish and shrimp, at 25% of sea mussel and undaria, at 15% of sardine. 2. Hydrolysis ratios of cuttlefish and shirmp, sea mussel and undaria, and sardine reach maximum values at 30% of HCl, 25% of HCl and 15% of HCl, respectively.

  • PDF

Effects of γ-aminobutyric acid and hydrochloric acid on growth performance, nutrient digestibility and fecal score of growing pigs

  • Ding, Zhenyu;Kim, Inho
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.489-496
    • /
    • 2019
  • A study was conducted to determine the effects of feeding ${\gamma}$-aminobutyric acid (GABA) and hydrochloric acid (HCl) on the growth performance, nutrient digestibility and fecal score in growing pigs. Ninety Duroc ${\times}$ (Landrace ${\times}$ Large Yorkshire) growing pigs with an average initial body weight (BW) of $25.51{\pm}1.63kg$ were randomly allotted to three treatment groups with 6 replications of 5 pigs per replicate pen for each treatment in a 6-week trial period. The treatments were as follows: 1) basal diet (CON); 2) basal diet with 0.05% GABA and 3) basal diet with 1% of a 10% HCl solution. The results showed that GABA supplementation significantly increased the average daily gain (ADG) (p < 0.05) compared with the control during week 4 and the overall experiment period (0 to 6 weeks). However, HCl supplementation had a numerical increase in the ADG compared with the control. The total tract digestibility of dry matter (DM) was greater in GABA group than the CON (p < 0.05). The supplementation of GABA and HCl in the diet of growing pigs had no significant effect on the fecal scores compared with the CON. Experimental results show that supplementation of 0.05% GABA in the diet of growing pigs had a positive effect on the ADG and DM digestibility in growing pigs.

Effects of Adulterants in HCl on Artificial Hatching in the Silkworm Eggs (염산의 협잡물이 잠종의 인공부화에 미치는 영향)

  • 김윤식;김락상
    • Journal of Sericultural and Entomological Science
    • /
    • v.17 no.1
    • /
    • pp.35-39
    • /
    • 1975
  • The acid treatment hatching method has been used practically for about 60 years and a number of investigators have studied about the artificial hatching for silkworm e99s, but the basic theory about the acid treatment hatching is not clarified yet. It is no exaggeration to say that the accidents of non hatching is continued ceaselessly in the silkworm egg by hydrochloric acid treatment. It is believed that the accident is due to the adulterants in HCl lather than inattention of acid treatment. Therefore, the authors mixed hydrochloric acid (analytical grade) with or added it to chemical ingredients which are possible to be included in the process of hydrochloric acid production, and treated it to summer and fall silkworm egg. The metalic adulterants such as iron, mercury, lead and arsenic are appeared not to be worried, but damage of SO$_3$ and free chlorine is seemed to lie considerable. Therefore, before acid treatment for hatching hydrochloric acid was warmed to 50$^{\circ}C$ with shaking to evaporate several injurious gases, by whick the damage due to use of hydrochloric acid for acid treatment hatching is prevented considerably. In conclusion, it is recommended to pretest bioassay with every HCl samples before artificial hatching of silkworm egg.

  • PDF

Treatment of Hydrochloric acid from Regeneration and Scrubber system of Cold Rolling Mill Plant with Micro-bubble (마이크로버블을 이용한 냉연 산회수설비공정 발생 염화수소 가스 처리)

  • Jung, Yong-Jun;Jung, Jae-Ouk;Kim, Ye-Jin
    • Journal of Wetlands Research
    • /
    • v.17 no.2
    • /
    • pp.118-123
    • /
    • 2015
  • This work has performed to examine the operation status of regeneration and scrubber system of cold rolling mill plant and established the DIWS(Dip Injection Wet Scrubber) system for the removal of hydrochloric acid with micro bubble. When the initial 22.3 ppm of HCl gas was injected into the system, the average exhaust HCl gas was 0.59 ppm with the removal efficiency of 97.3%. Hydrochloric acid was effectively removed by DIWS system. In the long term monitoring for 10 hours by 5 minutes through TMS(Tele Monitoring System), the average exhaust HCl gas was stably kept 0.69 ppm, which was also verified by manual measurement.

Demonstration of constant nitrogen and energy amounts in pig urine under acidic conditions at room temperature and determination of the minimum amount of hydrochloric acid required for nitrogen preservation in pig urine

  • Jongkeon Kim;Bokyung Hong;Myung Ja Lee;Beob Gyun Kim
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.492-497
    • /
    • 2023
  • Objective: The objectives were to demonstrate that the nitrogen and energy in pig urine supplemented with hydrochloric acid (HCl) are not volatilized and to determine the minimum amount of HCl required for nitrogen preservation from pig urine. Methods: In Exp. 1, urine samples of 3.0 L each with 5 different nitrogen concentrations were divided into 2 groups: 1.5 L of urine added with i) 100 mL of distilled water or ii) 100 mL of 6 N HCl. The urine in open plastic containers was placed on a laboratory table at room temperature for 10 d. The weight, nitrogen concentration, and gross energy concentration of the urine samples were determined every 2 d. In Exp. 2, three urine samples with different nitrogen concentrations were added with different amounts of 6 N HCl to obtain varying pH values. All urine samples were placed on a laboratory table for 5 d followed by nitrogen analysis. Results: Nitrogen amounts in urine supplemented with distilled water decreased linearly with time, whereas those supplemented with 6 N HCl remained constant. Based on the linear broken-line analysis, nitrogen was not volatilized at a pH below 5.12 (standard error = 0.71 and p<0.01). In Exp. 3, an equation for determining the amount of 6 N HCl to preserve nitrogen in pig urine was developed: additional 6 N HCl (mL) to 100 mL of urine = 3.83×nitrogen in urine (g/100 mL)+0.71 with R2 = 0.96 and p<0.01. If 62.7 g/d of nitrogen is excreted, at least 240 mL of 6 N HCl should be added to the urine collection container. Conclusion: Nitrogen in pig urine is not volatilized at a pH below 5.12 at room temperature and the amount of 6 N HCl required for nitrogen preservation may be up to 240 mL per day for a 110-kg pig depending on urinary nitrogen excretion.

Effect of Hydrochloric Acid Concentration on Removal Efficiency and Chemical Forms of Heavy Metals During Dredged Sediment Acid Washing (준설토 산세척 시 염산 농도가 중금속의 정화효율 및 존재형태에 미치는 영향)

  • Kim, Kibeum;Choi, Yongju
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.74-83
    • /
    • 2020
  • In this study, the effect of hydrochloric acid (HCl) concentrations on removal efficiency and chemical forms of heavy metals in dredged sediment during acid washing was investigated. The removal efficiencies of Zn, Cu, Pb, Ni and Cd by acid washing were 18.4-92.4%, 7.2-83.7%, 9.4-75%, 8.1-53.4% and 34.4-70.8%, respectively. Overall, the removal efficiencies of heavy metals were remarkably enhanced with the increase of the acid strength. However, the removal efficiencies for 0.5 and 1.0 M HCl were comparable, and both cases met the Korean soil contamination standard. Based on the sequential extraction results, concentration of the exchangeable fraction (F1), the most labile fraction, increased whereas concentrations of the other fractions decreased with increasing acid strength. Particularly, the carbonate (F2) and Fe/Mn oxides (F3) fractions drastically decreased by using 0.5 M or 1.0 M HCl. The current study results verified that acid washing could effectively reduce heavy metal concentrations and its potential mobility in dredged sediments. However, the study also found that acid washing may cause significant increase in bioavailable fraction of heavy metals, suggesting the need to evaluate the changes in chemical forms of heavy metals by acid washing when determining the acid strength to be applied.

Separation of Fission Products by Ion Exchange Method (이온 교환법(交換法)에 의한 핵분열생성물(核分裂生成物)의 분리(分離))

  • Lee, Byung-Hun;Bang, Je-Geon
    • Journal of Radiation Protection and Research
    • /
    • v.8 no.1
    • /
    • pp.15-25
    • /
    • 1983
  • The sequential separation of Ru-103, Cs-137 and Ce-144 was carried out by organic cation exchanger, Amberite CG-120, and inorganic ion exchangers, silica gel and montmorillonite. The optimum conditions of Ru-103, Cs-137 and Ce-144 on Amberite CG-120 are 0.01M-, 0.01M- and 0.1IM- hydrochloric acid for the adsorption, and 3M-, 3M- and 5M-hydrochloric acid for the desorption, respectively. The optimum conditions of Ru-103, Cs-137 and Ce-144 on silica gel are pH 8, pH 8 and pH 8 for the adsorption. and 3M-, 1M- and 1M-hydrochloric acid for the desorption. respectively. The optimum conditions of Ru-103, Cs-137 and Ce-144 on montmorillonite are pH 8, 0.01M-hydrochloric acid and pH 4 for the adsorption, and 1M-, 5M- and 3M-hydrochloric acid for the desorption. respectively. The adsorption which occurs at lower ionic strength and the differences in desorption ionic strength are utilized for the separation of tracer mixture in continuous experiments. The individual separation of Ru-103, Cs-137 and Ce-144 can be carried out more efficiently with montmorillonite than with silica gel and Amberite CG-120.

  • PDF

Comprehensive Analysis of the Corrosion Inhibition Performance of 4-Piperonylideneaminoantipyrine for Mild Steel in HCl Solution: Concentration, Time, Temperature Effects, and Mechanistic Insights

  • Ahmed Y. I. Rubaye;Sabah M. Beden;Ahmed A. Alamiery;A. A. H. Kadhum;Waleed K. Al-Azzawi
    • Corrosion Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.20-32
    • /
    • 2024
  • Metal corrosion in acidic environments is a major issue in various industrial applications. This study evaluates the 4-piperonylideneaminoantipyrine (PPDAA) corrosion inhibition efficiency for mild steel in a hydrochloric acid (HCl) solution. The weight loss method was used to determine the corrosion inhibition efficiency at different concentrations and immersion time periods. Results revealed that the highest inhibition efficiency (94.3%) was achieved at 5 mM concentration after 5 hours of immersion time. To inspect the surface morphology of the inhibitor film on the mild steel surface, scanning electron microscopy (SEM) was used before and after immersion in 1.0 M HCl. Density functional theory (DFT) calculations were performed to investigate the molecular structure and electronic properties of the inhibitor molecule to understand the corrosion inhibition mechanism. Theoretical results showed that the inhibitor molecule can adsorb onto the mild steel surface through its nitrogen and oxygen atoms, forming a protective layer that prevents HCl corrosive attack. These findings highlight the potential of PPDAA as an effective corrosion inhibitor for mild steel in HCl solution. Moreover, combining experimental and theoretical approaches provides insights into the mechanism of corrosion inhibition, which is essential for developing effective strategies to prevent metal corrosion in acidic environments.

Solvent Extraction of Co(II) and Cu(II) from Hydrochloric Acid Solution of Spent Lithium-ion Batteries Containing Li(I), Mn(II), and Ni(II) (Li(I), Mn(II) 및 Ni(II)를 함유한 폐리튬 이온 배터리의 염산침출용액에서 Co(II) 및 Cu(II)의 용매 추출)

  • Le, Minh Nhan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.73-80
    • /
    • 2020
  • In order to develop a process for the recovery of valuable metals from spent LiBs, solvent extraction experiments were performed to separate Cu(II) and/or Co(II) from synthetic hydrochloric acid solutions containing Li(I), Mn(II), and Ni(II). Commercial amines (Alamine 336 and Aliquat 336) were employed and the extraction behavior of the metals was investigated as a function of the concentration of HCl and extractants. The results indicate that HCl concentration affected remarkably the extraction efficiency of the metals. Only Cu(II) was selectively at 1 M HCl concentration, while both Co(II) and Cu(II) was extracted by the amines when HCl concentration was higher than 5 M, leaving the other metal ions in the raffinate. Therefore, it was possible to selectively extract either Cu(II) or Co(II)/Cu(II) by adjusting the HCl concentration.