• Title/Summary/Keyword: hydrochemistry

Search Result 48, Processing Time 0.024 seconds

Hydrochemistry and Origin of Noble Gases and $CO_2$ Gas Within Carbonated Mineral Waters in the Kyeoungbuk-Kangwon Province, Korea (경북-강원일대 탄산약수의 수질화학과 탄산 및 영족기체 기원)

  • Jeong, Chan-Ho;Yoo, Sang-Woo;Kim, Kyu-Han;Nagao, Keisuke
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.65-77
    • /
    • 2011
  • Hydrochemical and carbon isotopic (${\delta}^{13}C_{DIC}$) analyses of 11 water samples, and noble gas isotopic analyses of 8 water samples collected in the Kyeoungbuk and Kangwon areas of Korea were performed to determine their hydrochemical characteristics and to interpret the source of noble gases and $CO_2$ gas in the water. The carbonated mineral waters are weakly acidic (PH = 5.59-6.04), and electrical conductivity ranges from 302 to $864\;{\mu}S/cm$. The chemical composition of all the water samples is Ca-$HCO_3$ type. The high contents of Fe and Mn exceed the safe limits for drinking water. The ${\delta}^{13}C_{DIC}$ values of the samples range from -5.30‰ to -2.84‰, indicating that the carbon is supplied mainly from a deep-seated source and to a lesser degree from an inorganic carbonate source. The $^3He/^4He$ ratios of the samples range from $1.51{\times}10^{-6}$ to $6.45{\times}10^{-6}$. The samples plot into three groups on a $^3He/^4He$ versus $^4He/^{20}Ne$ diagram: the deep-seated field (e.g., a mantle source), the atmospheric field, and the air-mantle mixing field. A wide range of $^4He/^{20}Ne$ ratios is observed ($0.036{\times}10^{-6}$ to $1.76{\times}10^{-6}$), indicating that while radiogenic $^4He$ is dominant in these water samples, mantle-origin He is also present. The supply of $CO_2$ gas and noble gases from a deep-seated source to carbonated waters is inferred to be controlled by geological structures such as faults and geological boundaries.

Hydrochemistry and Occurrence of Natural Radioactive Materials within Borehole Groundwater in the Cheongwon Area (청원지역 시추공 지하수의 수리화학 및 자연방사성물질 산출 특성)

  • Jeong, Chan-Ho;Kim, Moon-Su;Lee, Young-Joon;Han, Jin-Seok;Jang, Hyo-Geun;Jo, Byung-Uk
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.163-178
    • /
    • 2011
  • A test borehole was drilled in the Cheongwon area to investigate the relationship between geochemical environment and the natural occurrence of radioactive materials (uranium and Rn-222) in borehole groundwater. The borehole encountered mainly biotite schist and biotite granite, with minor porphyritic granite and basic dykes. Six groundwater samples were collected at different depths in the borehole using the double-packed system. The groundwater pH ranges from 5.66 to 8.34, and the chemical type of the groundwater is Ca-$HCO_3$. The contents of uranium and Rn-222 in the groundwater are 0.03-683 ppb and 1,290-7,600 pCi/L, respectively. The contents of uranium and thorium in the rocks within the borehole are 0.51-23.4 ppm and 0.89-62.6 ppm, respectively. Microscope observations of the rock core and analyses by electron probe microanalyzer (EPMA) show that most of the radioactive elements occur in the biotite schist, within accessory minerals such as monazite and limenite in biotite, and in feldspar and quartz. The high uranium content of groundwater at depths of -50 to -70 m is due to groundwater chemistry (weakly alkaline pH, an oxidizing environment, and high concentrations of bicarbonate). The origin of Rn-222 could be determined by analyzing noble gas isotopes (e.g., $^3He/^4He$ and $^4He/^{20}Ne$).

Assessment of Hydrochemistry and Irrigation Water Quality of Wicheon Watershed in the Gyeongsangbuk-do (경상북도 위천수계의 수리화학적 특성 및 관개용수 수질평가)

  • Lee, Gi-Chang;Park, Moung-Sub;Kim, Jae-Sik;Jang, Tae-Kwon;Kim, Hyo-Sun;Lee, Hwa-Sung;Son, Jin-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.36-43
    • /
    • 2020
  • BACKGROUND: Wicheon watershed has the largest irrigation area among the mid-watershed of Nakdong river. However, no investigation of irrigation water quality has been conducted on the Wicheon watershed, which evaluates the effects on the soil quality and crop cultivation. Therefore, this study aims to provide various assessments of water quality of Wicheon watershed as the scientific basic data for efficient agricultural activities. METHODS AND RESULTS: Water sampling was performed in five locations of the first tributaries of Wicheon. Wicheon watershed showed clean water quality with very low organic matters and safe water quality from metals at all points of investigation. It was estimated that the natural chemical components of Wicheon watershed were originated from water-rock interaction in Gibbs diagram. All samples were concentrated in the type of Ca-HCO3-Cl in the Piper diagram. The quality of irrigation water was evaluated with sodium adsorption ratio (SAR), residual sodium carbonate (RSC), permeability index (PI), and percent sodium (%Na). The values of these water quality indices were in the range of 0.37-0.67, -2.11--0.24, 41.13-84.52% and 11.28-21.84%, respectively, and were classified as good grades at all sites. CONCLUSION: The water quality of Wicheon watershed was very low in salt, indicating good irrigation water suitable for growing agricultural products. We hope that the results of this study will be used as the basic data for the cultivation of agricultural products and promotion of their excellence.

The Hydrochemical and Stable Isotope Characteristics of Shallow Groundwater Near the Gwangju Stream (광주천 인근 천부 지하수의 수리화학 및 안정동위원소 특성)

  • Yoon, Wook;Ji, Se-Jung;So, Chil-Sub
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.441-455
    • /
    • 2003
  • The most common water types are found to be Ca-$HCO_3$, Ca-Na-$HCO_3$ and Ca-Na-$HCO_3$-Cl in Gwangju groundwater. Groundwater near the Gwangju stream are characterized Ca-Cl water type, with over 50 mg/L of C1- and 400 ${\mu}$S/cm of EC. The systematic variation of $Cl^-$, $HCO_3^-$,- EC and ${\gamma}^{18}O$ values in groundwater with distance away from drainages is caused by streamwater infiltration. Stable isotope data indicate that ${\gamma}$D and ${\gamma}^{18}O$ values of groundwaters near drainages were enriched by evaporation effect, showing a equation of ${\gamma}$D=7. 1${\times}{\gamma}^{18}O$-1. ${\gamma}^{18}O$ values over -6${\textperthansand}$ are anomalous in the unconfined groundwater zones, which are influenced by the local surface water enriched in $^{18}O$ composition. Groundwater in highland shows remarkably light ${\gamma}^{18}O$ values below -8$\textperthousand$. The infiltration of streamwater is dominant in unconfined alluvium aquifer near drainages. ${\gamma}^{13}$CDIC values (-17.6∼-15.2$\textperthousand$) of groundwaters near drainages revealed that dissolved inorganic carbon (DIC) is predominantly originated from natural soil-derived $CO_2$. ${\gamma}^{15}N$ and ${\gamma}^{18}O$ values of nitrate are 0∼17.0${\textperthansand}$ and 6.6∼17.4${\textperthansand}$, respectively. Relationship between ${\gamma}^{15}N$ and ${\gamma}^{18}O$ shows a systematic isotopic fractionation caused by denitrification of 40∼60%, suggesting that the major source of groundwater nitrate originated from nitrate of soils, and mixing nitrate of soil and sewage or manure.

Hydrochemistry and Distribution of Uranium and Radon in Groundwater of the Nonsan Area (논산지역 지하수중 우라늄과 라돈의 수리지질학적 특성과 정밀함량분포)

  • Cho, Byeong Wook;Kim, Moon Su;Kim, Tae Seung;Han, Jin Seok;Yun, Uk;Lee, Byeong Dae;Hwang, Jae Hong;Choo, Chang Oh
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.427-437
    • /
    • 2012
  • A total of 100 groundwater samples were collected from the Nonsan area and the behaviors of uranium and radon as natural radionuclides were investigated with respect to other physicochemical components in the groundwater in order to understand their occurrence, properties, and origins. Radionuclide levels were used to construct detailed concentration maps. The concentration of uranium ranges from 0 to 378 ${\mu}g/L$, with an average of 8.57 ${\mu}g/L$, standard deviation of 42.88 ${\mu}g/L$, and median of 0.56 ${\mu}g/L$. The correlation coefficient between uranium and radon is 0.42, whereas these radionuclides show no relation with other physicochemical components in groundwater. It is noteworthy that the uranium level in most samples (97% of the samples) is less than 30 ${\mu}g/L$, where the bedrock of the aquifer is granite or complex rocks located along the boundary between granite and metamorphic rocks. In the Okcheon metamorphic belt, the uranium concentration of most groundwater is less than 1 ${\mu}g/L$. Radon levels varies from 128 to 9,140 pCi/L, with an average of 2,186 pCi/L, standard deviation of 1,725 pCi/L, and median of 1,805 pCi/L. High radon levels (> 4,000 pCi/L) are most common in regions of Jurassic granite, whereas low radon areas are found in regions of sedimentary rock. In conclusion, the distribution and occurrence of radionuclides are intimately related to the basic geological characteristics of the rocks in which the radiogenic minerals are primarily contained.

The Hydrochemistry of ChusanYongchulso Spring, Cheonbu-ri, Buk-myeon, Northern Ulleung Island (울릉도 북면 천부리 추산 용출소의 수질화학적 특성)

  • Lee, Byeong Dae;Cho, Byong Wook;Choo, Chang Oh
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.565-582
    • /
    • 2018
  • We investigated the hydrochemical properties of ChusanYongchulso Spring located in Buk-myeon, Ulleung Island, focusing on the formation and characteristics of aquifers in and around the Nari caldera. Abundant pumice with high permeability and numerous fractures (including faults and joints) that formed as a result of caldera subsidence are widely distributed in the subsurface, favoring the formation of aquifers. Because of the presence of porous pyroclastic rocks with a high internal surface area, the water type of the springs is characterized by $NaHCO_3$, with upper stream waters and the upper spring being characterized by $NaHCO_3$ and NaCl, respectively. Components with a high coefficient of determination with EC are $HCO_3$, Na, F, Ca, Mg, Cl, $SiO_2$, and $SO_4$. The high concentrations of Na and Cl might be attributable to the main lithologies in the area, given that alkaline volcanic rocks are distributed extensively across Ulleung Island. Eh and pH, which are considered to be important indicators of water-rock interaction, are unrelated to most components. According to the results obtained from factor analysis, the variance explained by factor 1 is 54% and by factor 2 is 25.8%. Components with a high loading on factor 1 are F, Na, EC, Cl, $HCO_3$, $SO_4$, $SiO_2$, Ca, $NO_3$, and Mg, whereas components with a high loading on factor 2 are Mg and Ca, along with K, $NO_3$, and DO with negative loadings. It is suggested that the high concentrations of Na, Cl, F, and $SO_4$ are closely related to the presence of fine-grained alkaline pyroclastic rocks with high permeability and porosity, which favorintensewater-rock interaction. However, a wide-ranging investigation that encompasses methods such as geophysical prospecting and geochemical analysis (including isotope, trace-element, and tracer techniques) will be necessary to gain a better understanding of the groundwater chemistry, aquifer distribution, and water cycling of Ulleung Island.

Lithium Distribution in Thermal Groundwater: A Study on Li Geochemistry in South Korean Deep Groundwater Environment (온천수 내 리튬 분포: 국내 심부 지하수환경의 리튬 지화학 연구)

  • Hyunsoo Seo;Jeong-Hwan Lee;SunJu Park;Junseop Oh;Jaehoon Choi;Jong-Tae Lee;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.729-744
    • /
    • 2023
  • The value of lithium has significantly increased due to the rising demand for electric cars and batteries. Lithium is primarily found in pegmatites, hydrothermally altered tuffaceous clays, and continental brines. Globally, groundwater-fed salt lakes and oil field brines are attracting attention as major sources of lithium in continental brines, accounting for about 70% of global lithium production. Recently, deep groundwater, especially geothermal water, is also studied for a potential source of lithium. Lithium concentrations in deep groundwater can increase through substantial water-rock reaction and mixing with brines. For the exploration of lithim in deep groundwater, it is important to understand its origin and behavior. Therefore, based on a nationwide preliminary study on the hydrogeochemical characteristics and evolution of thermal groundwater in South Korea, this study aims to investigate the distribution of lithium in the deep groundwater environment and understand the geochemical factors that affect its concentration. A total of 555 thermal groundwater samples were classified into five hydrochemical types showing distinct hydrogeochemical evolution. To investigate the enrichment mechanism, samples (n = 56) with lithium concentrations exceeding the 90th percentile (0.94 mg/L) were studied in detail. Lithium concentrations varied depending upon the type, with Na(Ca)-Cl type being the highest, followed by Ca(Na)-SO4 type and low-pH Ca(Na)-HCO3 type. In the Ca(Na)-Cl type, lithium enrichment is due to reverse cation exchange due to seawater intrusion. The enrichment of dissolved lithium in the Ca(Na)-SO4 type groundwater occurring in Cretaceous volcanic sedimentary basins is related to the occurrence of hydrothermally altered clay minerals and volcanic activities, while enriched lithium in the low-pH Ca(Na)-HCO3 type groundwater is due to enhanced weathering of basement rocks by ascending deep CO2. This reconnaissance geochemical study provides valuable insights into hydrogeochemical evolution and economic lithium exploration in deep geologic environments.

Hydrochemistry and Noble Gas Origin of Various Hot Spring Waters from the Eastern area in South Korea (동해안지역 온천유형별 수리화학적 특성 및 영족기체 기원)

  • Jeong, Chan-Ho;Nagao, Keisuke;Kim, Kyu-Han;Choi, Hun-Kong;Sumino, Hirochika;Park, Ji-Sun;Park, Chung-Hwa;Lee, Jong-Ig;Hur, Soon-Do
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • The purpose of this study is to characterize the hydrogeochemical characteristics of hot spring waters and to interpret the source of noble gases and the geochemical environment of the hot spring waters distributed along the eastern area of the Korean peninsula. For this purpose, We carried out the chemical, stable isotopic and noble gas isotopic analyses for eleven hot spring water and fourteen hot spring gas samples collected from six hot spring sites. The hot spring waters except the Osaek hot spring water show the pH range of 7.0 to 9.1. However, the Osaek $CO_2$-rich hot spring water shows a weak acid of pH 5.7. The temperature of hot spring waters in the study area ranges from $25.7^{\circ}C$ to $68.3^{\circ}C$. Electrical conductivity of hot spring waters varies widely from 202 to $7,130{\mu}S/cm$. High electrical conductivity (av., $3,890{\mu}S/sm$) by high Na and Cl contents of the Haeundae and the Dongrae hot spring waters indicates that the hot spring waters were mixed with seawater in the subsurface thermal system. The type of hot springs in the viewpoint of dissolved components can be grouped into three types: (1) alkaline Na-$HCO_3$ type including sulfur gas of the Osaek, Baekam, Dukgu and Chuksan hot springs, and (2) saline Na-Cl type of the Haeundae and Dongrae hot springs, and (3) weak acid $CO_2$-rich Na-$HCO_3$ type of Osaek hot spring. Tritium ratios of the Haeundae and the Dongrae hot springs indicate different residence time in their aquifers of older water of $0.0{\sim}0.3$ TU and younger water of $5.9{\sim}8.8$ TU. The ${\delta}^{18}O$ and ${\delta}D$ values of hot spring waters indicate that they originate from the meteoric water, and that the values also reflect a latitude effect according to their locations. $^3He/^4He$ ratios of the hot spring waters except Osaek $CO_2$-rich hot spring water range from $0.1{\times}10^{-6}$ to $1.1{\times}10^{-6}$ which are plotted above the mixing line between air and crustal components. It means that the He gas in hot spring waters was originated mainly from atmosphere and crust sources, and partly from mantle sources. The Osaek $CO_2$-rich hot spring water shows $3.3{\times}10^{-6}$ in $^3He/^4He$ ratio that is 2.4 times higher than those of atmosphere. It provides clearly a helium source from the deep mantle. $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range of an atmosphere source.