• Title/Summary/Keyword: hydro-mechanical

Search Result 385, Processing Time 0.022 seconds

A study on the Molding Stability of Hydro-mechanical High Speed Injection Molding for Thin-Walled(0.3mm) LGP (초박형(0.3t) 도광판 적용을 위한 유압식 고속사출성형의 성형 안정성 연구)

  • Kim, J.S.;Oh, J.G.;Jeong, C.;An, H.J.;Hwang, C.J.;Kim, J.D.;Yoon, K.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.422-425
    • /
    • 2008
  • Recently, electronic products and related parts are required to have thin thickness because of small form factor. To go with the trend, LGP(light guide plate) of LCD BLU(Liquid Crystal Display Back light unit: It is one of kernel parts of LCD) for cell phone has the thickness of 0.3 mm and the battery case of cell phone has 0.25 mm. Accordingly, high speed injection molding is required to make products which have thin thickness. High speed injection molding means that the resin is injected into the cavity at higher than normal speed avoiding short shot. In the case of hydro-mechanical high speed injection machine, it requires the design for hydraulic unit to make high injection speed and the design for control unit to control hydraulic unit. In the present paper, we concentrated on the molding stability of hydro-mechanical high speed injection machine to make an LGP of 0.3 mm thickness.

  • PDF

Performance Characteristics of Hydro-mechanical Transmission and Design Parameters for Type Selection (정유압-기계식 변속기의 성능 특성과 형식 선정을 위한 설계 변수)

  • Sim, Dong-Guk;Kim, Kyeong-Uk;Han, Jung-Soo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.422-433
    • /
    • 2011
  • Market demand for hydro-mechanical transmission (HMT) for agricultural tractors has increased recently. To select a type of HMT satisfying design conditions, performance characteristics of 12 HMT types must be understood. This study was conducted to provide tractor engineers with a guideline to select the most appropriate HMT type for their design requirements. Characteristics on speed reduction ratio, power transmission efficiency, power regeneration, lock-up angular velocity, output torque ratio and torque ratio of planetary gear train axis of the 12 HMT types were investigated and presented as either formula or graphical forms. A guideline to select proper HMT type was also presented using 2 parameter: lock-up angular velocity (${\omega}_L$) and torque ratio of the planetary gear train axis. In addition, effect of gear ratio of the planetary gear train on the power transmission efficiency was investigated and a guideline to select the best gear ratio was also presented.

Hydro-mechanical interaction of reinforced concrete lining in hydraulic pressure tunnel

  • Wu, He-Gao;Zhou, Li;Su, Kai;Zhou, Ya-Feng;Wen, Xi-Yu
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.699-712
    • /
    • 2019
  • The reinforced concrete lining of hydraulic pressure tunnels tends to crack under high inner water pressure (IWP), which results in the inner water exosmosis along cracks and involves typical hydro-mechanical interaction. This study aims at the development, validation and application of an indirect-coupled method to simulate the lining cracking process. Based on the concrete damage plasticity (CDP) model, the utility routine GETVRM and the user subroutine USDFLD in the finite element code ABAQUS is employed to calculate and adjust the secondary hydraulic conductivity according to the material damage and the plastic volume strain. The friction-contact method (FCM) is introduced to track the lining-rock interface behavior. Compared with the traditional node-shared method (NSM) model, the FCM model is more feasible to simulate the lining cracking process. The number of cracks and the reinforcement stress can be significantly reduced, which matches well with the observed results in engineering practices. Moreover, the damage evolution of reinforced concrete lining can be effectively slowed down. This numerical method provides an insight into the cracking process of reinforced concrete lining in hydraulic pressure tunnels.

The Hydro-mechanical Analysis of Jointed Rock Mass Around the Underground Oil ac Gas Storage Cavern (원유 및 가스 지하저장시설에서 불연속면을 고려한 수리-역학적 상호작용에 관한 연구)

  • 장현익;이정인
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.291-303
    • /
    • 2002
  • In this study, three-dimensional block generation program was developed using the discontinuities input data for three-dimensional mechanical and hydro-mechanical analysis. Shi's two dimensional theory and program was extended to those of three-dimension and the deformations of blocks were calculated. The two-dimensional hyro-mechanical theory of DDA was also extended to three-dimensional theory and coupling deformation of the underground cavern was analyzed considering discontinuities.

Effect of Blade Angle on the Performance of a Cross-Flow Hydro Turbine

  • Choi, Young-Do;Lim, Jae-Ik;Kim, You-Taek;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.413-420
    • /
    • 2008
  • In order to improve the performance of cross-flow hydro turbine, detailed examination of the effect of the turbine configuration on the performance is needed necessarily. Therefore, this study is aimed to investigate the effect of blade angle on the performance of the cross-flow hydro turbine. Analysis of the turbine performance with the variation of the blade angle has been made by using a commercial CFD code. The results show that inlet and outlet angles of runner blade give considerable effect on the performance of the turbine. Pressure on the surface of the runner blade changes remarkably by the blade angle both at the Stages 1 and 2. Moreover, relatively small blade inlet angle is effective to produce higher value of output power. Recirculating flow in the runner passage causes remarkable hydraulic loss.

Performance Improvement of a Micro Eco Cross-Flow Hydro Turbine

  • Kokubu, Kiyoshi;Kanemoto, Toshiaki;Son, Sung-Woo;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.902-909
    • /
    • 2012
  • This study is aimed to develop a new type of micro cross-flow hydro turbine which has very simple structure and relatively high efficiency. Micro eco cross-flow hydro turbine (ECFT) is proposed to apply in the ranges of very low and middle specific speeds in order to extend the operational range of the turbine. In order to not only obtain a basic data for a new design method of ECFT but also improve the turbine efficiency, experiments and CFD analysis on the performance and internal flow characteristics of the turbine model are conducted. According to the present study results, anti-recirculation block (ARB) and relatively wide turbine width with high flow rate improve the turbine efficiency.

On-line partial discharge measurement techniques of hydro-generator windings (수력 발전기 권선에서의 운전중 부분방전 측정기법)

  • 황동하;김진봉;김용주;박명수;김택수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.294-300
    • /
    • 1996
  • In hydro-generator, a groundwall insulation of stator windings gradually deteriorates due to mechanical, thermal, electrical and environmental stresses. These stresses combine to result in loose windings, delamination of the stator insulation and/or electrical tracking of the endwinding, all of which can lead to stator insulation failures. Conventionally, off-line tests such as partial discharge measurement, DC/AC current and .DELTA.tan.delta. tests has been used for estimation of winding condition. However, off-line test requires large power supply and generator outage. In addition, major cause of insulation problems such as loose wedges and slot dischages may not be found with off-line diagnoses. This paper introduces the on-line partial discharge measurement techniques using frequency spectrum analyzer(FSA) for the generator stator windings. The experimental results from the UIAM #1 hydro-generator confirms a optimistic application of on-line generator diagnosis method as a reliable tool for evaluation of winding condition.

  • PDF

Traction Performance Improvement Study on a Small-scale Tower Yarder Attached to a Farm Tractor (농업용 트랙터 기반 소형 타워야더의 견인 성능 개선에 관한 연구)

  • Paik, Seung Ho;Choi, Yun-Sung;Cho, Min-Jae;Mun, Ho-Seong;Han, Sang-Kyun;Kim, Dae-Hyun;Oh, Jae-Heun
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.562-573
    • /
    • 2019
  • In a cable yarding system, a small-scale tower yarder attached to a farm tractor wasdeveloped and used for small-diameter tree harvesting operations. Based on this design, improvement of traction performance was required for medium- and large-diameter tree harvesting operations. In this study, the mechanical transmission employed for the tower yarder was modified into ahydro-mechanical transmission system. Maximum traction forces, including tractor engine speed and hydraulic power pressure, were investigated, and comparisons were made between the mechanical and hydro-mechanical transmission systems. Six tractor engine speeds (1,200, 1,400, 1,600, 1,800, 2,000, and 2,200) and three levels of power transmission mechanism pressure (4.9, 6.9, and 8.8 MPa) were investigated in the two different transmission systems. Results showed a maximum traction force of 15,146.6 N at an engine rotation speed of 757 rpm in the current mechanical transmission system, and 36,140.0 N at anengine rotation speed of 1,575 rpm in the modified hydro-mechanical transmission system. The maximum traction forces for the hydro-mechanical transmission were 2.4 times greater than those of the mechanical transmission, and may therefore be applicable to medium and large-diameter tree harvesting operations. Thus,as a modified version of the conventional transmission system, the new hydro-mechanical transmission system may be cost-effective for use in large-scale cable yarding operations. In the future, however, it will be necessary to investigate problems that may arise from field application tests.

Modelling Gas Production Induced Seismicity Using 2D Hydro-Mechanical Coupled Particle Flow Code: Case Study of Seismicity in the Natural Gas Field in Groningen Netherlands (2차원 수리-역학적 연계 입자유동코드를 사용한 가스생산 유발지진 모델링: 네덜란드 그로닝엔 천연가스전에서의 지진 사례 연구)

  • Jeoung Seok Yoon;Anne Strader;Jian Zhou;Onno Dijkstra;Ramon Secanell;Ki-Bok Min
    • Tunnel and Underground Space
    • /
    • v.33 no.1
    • /
    • pp.57-69
    • /
    • 2023
  • In this study, we simulated induced seismicity in the Groningen natural gas reservoir using 2D hydro-mechanical coupled discrete element modelling (DEM). The code used is PFC2D (Particle Flow Code 2D), a commercial software developed by Itasca, and in order to apply to this study we further developed 1)initialization of inhomogeneous reservoir pressure distribution, 2)a non-linear pressure-time history boundary condition, 3)local stress field monitoring logic. We generated a 2D reservoir model with a size of 40 × 50 km2 and a complex fault system, and simulated years of pressure depletion with a time range between 1960 and 2020. We simulated fault system failure induced by pressure depletion and reproduced the spatiotemporal distribution of induced seismicity and assessed its failure mechanism. Also, we estimated the ground subsidence distribution and confirmed its similarity to the field measurements in the Groningen region. Through this study, we confirm the feasibility of the presented 2D hydro-mechanical coupled DEM in simulating the deformation of a complex fault system by hydro-mechanical coupled processes.

Design of the Hydro-Mechanical Transmission for a 55kW-Class Agricultural Tractor (55kW급 농업용 트랙터 정유압 기계식 변속기 설계)

  • Baek, Seung Min;Kim, Wan Soo;Kim, Yeon Soo;Baek, Seung Yun;Kim, Yong Joo
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.19-27
    • /
    • 2020
  • The purpose of this study was to suggest design criteria for the HMT (hydro-mechanical transmission) of a 55 kW-class agricultural tractor, develop a simulation model, and evaluate its performance such as axle rotational speed, tractor speed, and power transmission efficiency. In this study, the HMT comprised a compound planetary gear and a HSU (hydro-static unit), and the compound planetary gear comprised two planetary gear sets. The HMT has three gear stages, and the maximum tractor speed was selected as 40 km/h. The simulation time was set at 2736 hours considering the lifetime of the tractor, and the simulation was performed for each gear stage at the engine-rated power conditions. As a result of the simulation, the axle rotational speeds for each gear stage were 39, 77, and 158 rpm, respectively. The range of tractor speed for each gear stage were 1.05-10.22 km/h, 10.74-20.17 km/h, and 20.70-41.40 km/h, respectively. The APE (absolute percentage gear) for the tractor's maximum speed between target value and simulation results were 2.20%, 0.85%, and 3.50%, respectively. Also, the power transmission efficiency for each gear stage were 0-75%, 72-81%, and 69-81%, respectively. The simulation results for the power transmission efficiency of the HMT were similar with the results of the previous research. This was a basic study on the development of the HMT for an agricultural tractor. In future studies, it is necessary to develop a tractor platform and evaluate the performance. The comparison between the simulation model and the HMT tractor should be performed.