DOI QR코드

DOI QR Code

Modelling Gas Production Induced Seismicity Using 2D Hydro-Mechanical Coupled Particle Flow Code: Case Study of Seismicity in the Natural Gas Field in Groningen Netherlands

2차원 수리-역학적 연계 입자유동코드를 사용한 가스생산 유발지진 모델링: 네덜란드 그로닝엔 천연가스전에서의 지진 사례 연구

  • Received : 2023.02.15
  • Accepted : 2023.02.24
  • Published : 2023.02.28

Abstract

In this study, we simulated induced seismicity in the Groningen natural gas reservoir using 2D hydro-mechanical coupled discrete element modelling (DEM). The code used is PFC2D (Particle Flow Code 2D), a commercial software developed by Itasca, and in order to apply to this study we further developed 1)initialization of inhomogeneous reservoir pressure distribution, 2)a non-linear pressure-time history boundary condition, 3)local stress field monitoring logic. We generated a 2D reservoir model with a size of 40 × 50 km2 and a complex fault system, and simulated years of pressure depletion with a time range between 1960 and 2020. We simulated fault system failure induced by pressure depletion and reproduced the spatiotemporal distribution of induced seismicity and assessed its failure mechanism. Also, we estimated the ground subsidence distribution and confirmed its similarity to the field measurements in the Groningen region. Through this study, we confirm the feasibility of the presented 2D hydro-mechanical coupled DEM in simulating the deformation of a complex fault system by hydro-mechanical coupled processes.

본 연구에서는 2차원 수리-역학적연계 개별요소모델링(DEM)을 사용하여 네델란드 그로닝엔(Groningen) 천연가스전 저류층의 유발지진을 모사하였다. 수치해석 코드는 ITASCA社의 상용프로그램인 PFC2D (Particle Flow Code 2D)를 사용하였으며 본 수치해석 연구에 적용하기 위해 수리-역학적 연계 모델 외 1) 비균질 저류층 압력분포 초기화, 2) 비선형 압력-시간이력 경계조건, 3) 국소 응력 분포 계산 등의 개별모듈을 추가개발, 적용하였다. 그로닝엔 가스전에 분포하는 복잡한 단층 형상을 포함하는 40 × 50 km2 크기의 2차원 모델을 생성하였고, 1960년부터 2020년까지 약 60년 동안의 가스생산, 즉 압 력저하로 인한 단층의 파괴거동을 모사하였다. 유발지진의 시공간적 발생을 수치해석모델로 재현하였고 그 발생 메커니즘을 규명하였다. 또한 저류층 압축으로부터 지표에서의 지반침하의 분포를 예측하였고 그로닝엔에서의 실측자료 사이에 유사성을 확인할 수 있었다. 이를 통해 본 연구에서 소개한 2차원 수리-역학적연계 개별요소모델링(DEM)의 복잡한 지질조건과 수리-역학적 연계 프로세스에 의한 단층거동을 구현할 수 있는 툴(tool)로서의 활용성을 확인하였다.

Keywords

References

  1. Bourne, S.J., Oates, S.J., and van Elk, J., 2018, The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk, Geophysical Journal International, 213, 1693-1700. https://doi.org/10.1093/gji/ggy084
  2. Bourne., S. and Oates, S., 2019, Evolution of induced earthquake magnitude distributions with increasing stress in the Groningen gas field, NAM, November 2019.
  3. Buijze, L., van den Bogert, P.A J., Wassing, B.B.T., and Orlic, B., 2019, Nucleation and arrest of dynamic rupture induced by reservoir depletion, Journal of Geophysical Research: Solid Earth, 124, 3620-3645. https://doi.org/10.1029/2018JB016941
  4. Buijze, L., van den Bogert, P.A J., Wassing, B.B.T., Orlic, B., and ten Veen, J., 2017, Fault reactivation mechanisms and dynamic rupture modelling of depletion-induced seismic events in a Rotliegend gas reservoir, Netherlands Journal of Geosciencs, 96(5), 131-148. https://doi.org/10.1017/njg.2016.43
  5. de Jager, J. and Visser, C., 2017, Geology of the Groningen field - An overview, Netherlands Journal of Geosciences, 96(5), 3-15. https://doi.org/10.1017/njg.2015.33
  6. Dost, B., Goutbeek, F., Eck, T.V., and Kraaijpoel, D., 2012, Monitoring induced seismicity in the North of the Netherlands: status report 2010, Tech. Rep., Koninklijk Nederlands Meteorologisch, de Bilt, The Netherlands.
  7. Guises, R., Embry, J.-M., and Barton, C., 2015, Dynamic geomechanical modelling to assess and minimize the risk for fault slip during reservoir depletion of the Groningen field, NAM, June 2015.
  8. Hofmann, R., and team, 2016, Groningen Pressure Maintenance (GPM) study - progress report February 2016, NAM, February 2016.
  9. Hunfeld, L.B., Niemeijer, A.R., and Spiers, C.J., 2017, Frictional properties of simulated fault gouges from the seismogenic Groningen gas field under in situ P-T -chemical conditions, Journal of Geophysical Research: Solid Earth, 122, 8969-8989. https://doi.org/10.1002/2017JB014876
  10. Kortekaas, M. and Jaarsma, B., 2017, Improved definition of faults in the Groningen field using seismic attributes, Netherlands Journal of Geosciences, 96-5, s71-s85. https://doi.org/10.1017/njg.2017.24
  11. Mas Ivars, D., Pierce M.E., Darcel, C., Reyes-Montes, J., Potyondy, D., Young, R.P., and Cundall, P.A., 2011, The synthetic rock mass approach for jointed rock mass modelling, International Journal of Rock Mechanics & Mining Sciences, 48, 219-244. https://doi.org/10.1016/j.ijrmms.2010.11.014
  12. Muntendam-Bos, A.G., Hoedeman, G., Polychronopoulou, K., Draganov, D., Weemstra, C., van der Zee, W., Bakker, R.R., and Roest, H., 2022, An overview of induced seismicity in the Netherlands, Netherlands Journal of Geosciences, 101(1), doi:10.1017/njg.2021.14.
  13. NAM, 2021, Reservoir Pressure and Subsidence Groningen Field update for Production Profile GTS - raming 2021, March 2021.
  14. Nepveu, M., van Thienen-Visser, K., and Sijacic, D., 2016, Statistics of seismic events at the Groningen field. Bull Earthquake Eng 14, 3343-3362. https://doi.org/10.1007/s10518-016-0007-4
  15. van den Bogert, P.A.J., 2018, Depletion-induced fault slip and seismic rupture, NAM, December 2018.
  16. van Elk, J., and Doornhof, D., 2019, Special report on the Westerwijtwerd earthquake 22nd May 2019, NAM, May 2019.
  17. van Thienen-Visser, K., Pruiksma, J.P., and Breunese, J.N., 2015, Compaction and subsidence of the Groningen gas field in the Netherlands, Proc. IAHS, 372, 367-373. https://doi.org/10.5194/piahs-372-367-2015
  18. van Thienen-Visser, K., Sijacic, D., van Wees, J.-D., Kraaijpoel, D., and Roholl, J., 2016, Groningen field 2013 to present: gas production and induced seismicity, TNO 2016 R10425.
  19. Yoon, J.S., Hakimhashemi, A., Zang, A., and Zimmermann, G., 2013, Particle Based Discrete Element Modeling of Hydraulic Stimulation of Geothermal Reservoirs, Induced Seismicity and Fault Zone Deformation, Tunnel & Underground Space, 23(6), 493-505. https://doi.org/10.7474/TUS.2013.23.6.493
  20. Yoon, J.S., Stephansson, O., Zang, A., Min K.B., and Lanaro, F., 2017, Discrete bonded particle modelling of fault activation near a nuclear waste repository site and comparison to static rupture earthquake scaling laws, International Journal of Rock Mechanics & Mining Science1s, 98, 1-9.
  21. Yoon, J.S., Zang, A., and Stephansson, O., 2012, Simulating fracture and friction of Aue granite under confined asymmetric compressive test using clumped particle model, International Journal of Rock Mechanics & Mining Sciences. 49, 68-83. https://doi.org/10.1016/j.ijrmms.2011.11.004
  22. Yoon, J.S., Zang, A., and Stephansson, O., 2014, Numerical investigation on optimized stimulation of intact and naturally fractured deep geothermal reservoirs using hydro-mechanical coupled discrete particles joints model, Geothermics, 52, 165-184. https://doi.org/10.1016/j.geothermics.2014.01.009