• 제목/요약/키워드: hydro-dynamic model

검색결과 57건 처리시간 0.021초

주파수추종 운전 적용을 위한 BESS의 운용 방법 및 효과 (Operation of Battery Energy Storage System for Governor Free and its Effect)

  • 조성민;장병훈;윤용범;전웅재;김철우
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.16-22
    • /
    • 2015
  • As the development of Battery Energy Storage System(BESS) and the increasing of intermittent energy sources like wind power and photovoltaic, the application of BESS in load frequency control is considered as an effective method. To evaluate the effectiveness of BESS application in frequency control, we defined a governor free model of BESS to conduct dynamic simulation. Using the BESS dynamic model, we implemented the power system dynamic model including steam, gas and hydro turbine generators. In this paper we study the control performance of BESS in primary frequency control. The effect of BESS speed regulation rate and response time on governor free operation is investigated. In addition, we compared BESS from steam turbine generator in view point of frequency regulation.

공동현상 모델에 따른 침수형 평면 저널베어링의 동특성 및 회전 안정성에 대한 연구 (Dynamic Characteristics and Instability of Submerged Plain Journal Bearings in accordance with the Cavitation Model)

  • 최문호
    • Tribology and Lubricants
    • /
    • 제39권4호
    • /
    • pp.139-147
    • /
    • 2023
  • Cavitation phenomena observed during the operation of a submerged plain journal bearing (PJB) can affect bearing performance parameters such as dynamic coefficients, whirl frequency ratio, and critical mass. This study presents numerical solutions of the Reynolds equation for steadily and dynamically loaded submerged PJBs with half-Sommerfeld (HS), Reynolds, and Jakobsson-Floberg-Olsson (JFO) cavitation models when the supply pressure is larger or equal to the cavitation pressure. The loads at various eccentricity ratios are identical; however, the attitude angle is approximately 6% smaller when the eccentricity ratio is between 0.2 and 0.7 and the JFO model is used, compared to that when the Reynolds model is used. Dynamic coefficients obtained with the HS and Reynolds model show good agreement with each other, except for kxz, which is sensitive to changes in the force normal to the rotor weight, and is attributed to the difference in the attitude angle obtained with each cavitation model. Stiffness coefficients are determined using the pressure distribution in the film, and therefore, when the JFO model is used, the direct stiffness coefficients are affected and show opposite signs for most eccentricity ratios. The mass-conservative JFO model can predict at least a 30% smaller critical mass compared to that using the HS and Reynolds models. Thus, the instability analysis results can change based on the cavitation model used in a submerged PJB. The results of this research indicate that the JFO model should be used when designing a rotor system supported by submerged PJBs.

터빈 시뮬레이터용 수치제어기에 관한 연구 (Digital controller for turbine simulator)

  • 김석환;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.29-32
    • /
    • 1987
  • Hydro turbine, steam turbine and their generators can be described by one general model. To realize the turbine simulator, personal computer, D.C. motor and three phase thyristor converter have been used. In the experiments for the improvement of power system stability, that is, steady state, dynamic and transient stability, the characteristics of turbine simulator proposed by this paper have shown that of real prime mover.

  • PDF

Movement of Sand around Revetment under Water Pressure Variation

  • HoWoongShon
    • 지구물리
    • /
    • 제6권4호
    • /
    • pp.221-230
    • /
    • 2003
  • Many hydraulic structures are damaged by under flood flow and storm waves year after year. Many cases of dike and breakwater failure are caused by the suck out of sand from behind the revetment. This type of failure will be in close relation to the dynamic behavior of sand bed around the revetment. In this paper, from this point of view we investigated the basic characteristics of such sand movement by small model tests and tried to explanation the hydro- and soil mechanical mechanism of this phenomenon theoretically.

  • PDF

Modeling and Simulation for a Tractor Equipped with Hydro-Mechanical Transmission

  • Choi, Seok Hwan;Kim, Hyoung Jin;Ahn, Sung Hyun;Hong, Sung Hwa;Chai, Min Jae;Kwon, Oh Eun;Kim, Soo Chul;Kim, Yong Joo;Choi, Chang Hyun;Kim, Hyun Soo
    • Journal of Biosystems Engineering
    • /
    • 제38권3호
    • /
    • pp.171-179
    • /
    • 2013
  • Purpose: A simulator for the design and performance evaluation of a tractor with a hydro-mechanical transmission (HMT) was developed. Methods: The HMT consists of a hydro-static unit (HSU), a swash plate control system, and a planetary gear. It was modeled considering the input/output relationship of the torque and speed, and efficiency of HSU. Furthermore, a dynamic model of a tractor was developed considering the traction force, running resistance, and PTO (power take off) output power, and a tractor performance simulator was developed in the co-simulation environment of AMESim and MATLAB/Simulink. Results: The behaviors of the design parameters of the HMT tractor in the working and driving modes were investigated as follows; For the stepwise change of the drawbar load in the working mode, the tractor and engine speeds were maintained at the desired values by the engine torque and HSU stroke control. In the driving mode, the tractor followed the desired speed through the control of the engine torque and HSU stroke. In this case, the engine operated near the OOL (optimal operating line) for the minimum fuel consumption within the shift range of HMT. Conclusions: A simulator for the HMT tractor was developed. The simulations were conducted under two operation conditions. It was found that the tractor speed and the engine speed are maintained at the desired values through the control of the engine torque and the HSU stroke.

마찰스프링의 주퇴복좌장치 적용성 연구 (Application Study of Recoil Mechanism using Friction Springs)

  • 차기업;김학인;조창기
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.324-333
    • /
    • 2012
  • The conventional medium and large caliber gun, in general, utilize the hydro-pneumatic recoil mechanism to control the firing impulse and to return to the battery position. However, this kind of mechanism may cause the problems like the leakages and the property changes in oil and gas due to the temperature variations between low and high temperatures. Accordingly, the friction spring mechanism has recently been researched as an alternative system. The friction spring mechanism consists of a set of closed inner and outer rings with the concentric tapered contact surfaces assembled in the columnar form, and can only be used under the compression load. When the spring column is axially loaded, the tapered surfaces become overlapped, causing the outer rings to expand while the inner rings are being contracted in diameter allowing an axial displacement. Because of friction between tapered contact surfaces, much higher spring stiffness is obtained on the stroke at the increase in load than the stroke at the decrease. In this paper, the dynamic equations regarding the friction spring system and the design approach have been investigated. It is also tried for a dynamic model representing the recoil motion and the friction spring forces. And the model has been proved from firing test using a gun system with friction springs. All the results show that the recoil mechanism using friction springs can substitute for the classic hydro-pneumatic recoil system.

Simulation model for Francis and Reversible Pump Turbines

  • Nielsen, Torbjorn K.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권3호
    • /
    • pp.169-182
    • /
    • 2015
  • When simulating the dynamic behaviour of a hydro power plant, it is essential to have a good representation of the turbine behaviour. The pressure transients in the system occurs because the flow changes, which the turbine defines. The flow through the turbine is a function of the pressure, the speed of rotation and the wicket gate opening and is, most often described in a performance diagram or Hill diagram. In the Hill diagram, the efficiency is drawn like contour lines, hence the name. A turbines Hill diagram is obtained by performance tests on scaled model in a laboratory. However, system dynamic simulations have to be performed in the early stage of a project, before the turbine manufacturer has been chosen and the Hill diagram is known. Therefore one have to rely on diagrams for a turbine with similar speed number. The Hill diagram is drawn through measured points, so for using the diagram in a simulation program, one have to iterate in the diagram based on curve fitting of the measured points. This paper describes an alternative method. By means of the Euler turbine equation, it is possible to set up two differential equations which represents the turbine performance with good enough accuracy for the dynamic simulations. The only input is the turbine's main geometry, the runner blade in- and outlet angle and the guide vane angle at best efficiency point of operation (BEP). In the paper, simulated turbine characteristics for a high head Francis turbine, and for a reversible pump turbine are compared with laboratory measured characteristics.

Computational modeling of coupled fluid-structure systems with applications

  • Kerboua, Y.;Lakis, A.A.;Thomas, M.;Marcouiller, L.
    • Structural Engineering and Mechanics
    • /
    • 제29권1호
    • /
    • pp.91-111
    • /
    • 2008
  • This paper outlines the development of a computational model in order to analyze the dynamic behaviour of coupled fluid-structure systems such as a) liquid containers, b) a set of parallel or radial plates. In this work a hybrid fluid-solid element is developed, capable of simulating both membrane and bending effects of the plate. The structural mass and stiffness matrices are determined using exact integration of governing equations which are derived using a combination of classical plate theory and a finite element approach. The Bernoulli equation and velocity potential function are used to describe the liquid pressure applied on the solid-fluid element. An impermeability condition assures a permanent contact at the fluid-structure interface. Applications of this model are presented for both parallel and radial plates as well as fluid-filled rectangular reservoir. The effect of physical parameters on the dynamic behaviour of a coupled fluid-structure system is investigated. The results obtained using the presented approach for dynamic characteristics such as natural frequency are in agreement to those calculated using other theories and experiments.

이종 복합 메카니즘 HIF 기구의 충격저감시스템 해석 (Analysis of Isolation System in Distinct Multi-mechanism HIF Device)

  • 최의중;김효준
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.53-59
    • /
    • 2005
  • In this study, the isolation system for multi-mechanism HIF (high impulsive force) device has been investigated. For this purpose, parameter optimization process has been performed based on the simplified isolation system model under constraints of moving displacement and transmitted force. The design parameters for multi-mechanism HIF device have been derived with respect to HIF system I and HIF system II, respectively. In order to implement the dynamic absorbing system, the dual stage hydro-pneumatic damper and magnetorheological damper with semi-active control scheme are considered. Finally, the performance of the designed prototype isolation system has been evaluated by experimental works under actual operating conditions.

비선형 응답이력해석을 통한 사면의 동적 안전계수 계산 (Dynamic Factor of Safety Calculation of Slope by Nonlinear Response History Analysis)

  • 이용희;김학성;주영태;김대현;박헌준;박두희
    • 한국지반공학회논문집
    • /
    • 제37권9호
    • /
    • pp.5-12
    • /
    • 2021
  • 유사정적해석법은 실무에서 지진 시 사면의 안전계수를 구하기 위하여 널리 사용되고 있다. 반면에 동적해석은 지진 시 지반의 응력-변형관계를 가장 잘 모사할 수 있다는 장점에도 불구하고 설계기준에서 요구되는 안전계수를 산정하기 어려워 실무적으로 그 활용이 많지 않았다. 본 연구에서는 비선형 응답이력해석으로 사면의 동적 안전계수를 산정하는 기법을 구축하였다. 이 방법은 최대가속도를 인위적으로 조절해서 지진계수를 산정하는 유사정적해석법의 문제점을 극복하며 사면 고유의 증폭 특성을 고려할 수 있다. 제안된 방법은 단일 사면에 대해서 적용하였으며 해석 결과를 유사정적해석법과 비교하였다. 본 연구에서 사용한 사면 사례에서는 동적해석결과로부터 계산된 사면의 최소 안전계수는 유사정적해석결과와 유사하게 평가되었으며, 수평방향 지진계수와 활동 토체의 평균 가속도가 최대가 되는 시점에서 동적 안전계수는 최소가 됨을 확인하였다.