• Title/Summary/Keyword: hydro energy

Search Result 486, Processing Time 0.023 seconds

Evaluation on Reduction Effect about Noise of Hydraulic Turbine Dynamo in Dam using Auralization (가청화를 이용한 댐 수차 발전기소음의 저감효과 평가)

  • Soul, Soo-Hwan;Ju, Duck-Hoon;Kim, Jae-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.400-408
    • /
    • 2008
  • Multipurpose Dam, it produces electric energy by converting the potential energy into kinetic energy utilizing its head and quantity of the water. However, in this process, since during the time when the turbine connected to the hydraulic turbine generator revolves, there occurs a ceaseless loud noise, and due to this condition, it is true state that those people who work at inside of the power plant are damaging as hard as they are unable to concentrate on their work. Not only this, because the hydro-electric power generator room that locates at middle section between the hydraulic turbine room and the office is very large space volume, also since it was constructed chiefly by the reflecting material, it is functioning of amplify the noise when operating the generator, the soundproof measure against this condition is necessitated. On such viewpoint, I have presented the problem point of the relevant Hydraulic turbine dynamo and Hydraulic turbine dynamo room, and after improve such problem point, this study has ever investigated the satisfying degree about the noise-reduction at before and after of the improvement of soundproof measure, using the Auralizational technique that can experience virtual acoustic field. It is considering that such result could be utilized usefully as the fundamental material hereafter for the acoustic performance of the hydro-electric power generator room in dam and when its construction.

A Survey on the M&V to guarantee the energy saving performance of ESCO (ESCO 에너지절약 성과보증의 M&V 적용사례 분석)

  • Lim, Ki Choo
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.199-206
    • /
    • 2014
  • ESCO industry should guarantee the energy saving performance in response to changes of regulations ESCO. In this point, the application of the M&V is important task on energy saving performance. Therefore, we need to examine the contents of practice for the M&V in developed countries. Between energy user and ESCO, it is important to provide and measure the energy saving performance by guarantee of energy savings performance contracts. After 2013 ESCO business began focusing on guaranteed savings contracts. For this reason, we need to take M&V cases recommended from IPMVP and applied in United States and Japan. Therefore, we should be ready about M&V application for the real conditions of ESCO.

Numerical Modeling of Coupled Thermo-hydro-mechanical Behavior of MX80 Bentonite Pellets (MX80 벤토나이트 펠렛의 열-수리-역학적 복합거동 모델링)

  • Lee, Changsoo;Choi, Heui-Joo;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.446-461
    • /
    • 2020
  • Numerical simulations of CIEMAT column test in Spain are performed to investigate the coupled thermo-hydro-mechanical (THM) behavior of MX80 bentonite pellets using TOUGH2-FLAC3D. The heater power and injection pressure of water in the numerical simulations are identical to those in the laboratory test. To investigate the applicability of the thermo-hydraulic (TH) model used in TOUGH2 code to prediction of the coupled TH behavior, the simulation results are compared with the observations of temperature and relative humidity with time. The tendencies of the coupled behavior observed in the test are well represented by the numerical models and the simulator in terms of temperature and relative humidity evolutions. Moreover, the performance of the models for the reproduction and prediction of the coupled TH behavior is globally satisfactory compared with the observations. However, the calculated stress change is relatively small and slow due to the limitations of the simple elastic and swelling pressure model used in numerical simulations. It seems that the two models are insufficient to realistically reproduce the complex coupled THM behavior in the bentonite pellets.

Analysis of 766 keV Gamma Peak from NPP Environmental Samples (원전주변 환경시료의 766 keV 감마선에너지 피크에 대한 해석)

  • Kim, Wan;Lee, Hae-Young;Yang, He-Sun;Park, Hae-Soo;Kim, Bong-Kuk;Park, Hwan-Bae;Kim, Hong-Joo;Lee, Sang-Hoon
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.4
    • /
    • pp.190-194
    • /
    • 2009
  • Gamma spectral results for macroalgae samples taken from the environment of Ulchin nuclear power plants in Korea (east coast), showed 766 keV peaks, which were identified as $^{95}Nb$ by several research institutes. After the enhancement of liquid radioactive waste disposal facility at Ulchin NPP site, the $^{95}Nb$ amount in the liquid radioactive waste outflow has drastically reduced, but the expected reduction in $^{95}Nb$ specific activity from environmental samples did not actually show up on gamma spectroscopy. Detailed re-investigation revealed that along with 766 keV peak, other peaks (63, 92 and 1001 keV) from $^{234}Th-^{234}mPa$ decay series were also detected on spectroscopy, and that the measured half lives of the four peaks were very close to known half life of $^{234}Th-^{234}mPa$ decay series, which is 24.1 day. The measured gamma yield ratios of 766 keV peak to 1001 peak were very close to known ratio 0.35 for $^{234}mPa$. It is concluded that 766 keV peaks on gamma spectroscopy of Ulchin NPP environmental samples were mainly from $^{234}mPa$, which is one of naturally occurring radionuclides.

A Numerical Study of the Performance Assessment of Coupled Thermo-Hydro-Mechanical (THM) Processes in Improved Korean Reference Disposal System (KRS+) for High-Level Radioactive Waste (수치해석을 활용한 향상된 한국형 기준 고준위방사성폐기물 처분시스템의 열-수리-역학적 복합거동 성능평가)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.221-242
    • /
    • 2021
  • A numerical study of the performance assesment of coupled thermo-hydro-mechanical (THM) processes in improved Korean reference disposal system (KRS+) for high-level radioactive waste is conducted using TOUGH2-MP/FLAC3D simulator. Decay heat from high-level radioactive waste increases the temperature of the repository, and it decreases as decay heat is reduced. The maximum temperature of the repository is below a maximum temperature criterion of 100℃. Saturation of bentonite buffer adjacent to the canister is initially reduced due to pore water evaporation induced by temperature increase. Bentonite buffer is saturated 250 years after the disposal of high-level radioactive waste by inflow of groundwater from the surrounding rock mass. Initial saturation of rock mass decreases as groundwater in rock mass is moved to bentnonite buffer by suction, but rock mass is saturated after inflow of groundwater from the far-field area. Stress changes at rock mass are compared to the Mohr-Coulomb failure criterion and the spalling strength in order to investigate the potential rock failure by thermal stress and swelling pressure. Additional simulations are conducted with the reduced spacing of deposition holes. The maximum temperature of bentonite buffer exceeds 100℃ as deposition hole spacing is smaller than 5.5 m. However, temperature of about 56.1% volume of bentonite buffer is below 90℃. The methodology of numerical modeling used in this study can be applied to the performance assessment of coupled THM processes for high-level radioactive waste repositories with various input parameters and geological conditions such as site-specific stress models and geothermal gradients.

A Numerical Study on the Step 0 Benchmark Test in Task C of DECOVALEX-2023: Simulation for Thermo-Hydro-Mechanical Coupled Behavior by Using OGS-FLAC (DECOVALEX-2023 Task C 내 Step 0 벤치마크 수치해석 연구: OGS-FLAC을 활용한 열-수리-역학 복합거동 수치해석)

  • Kim, Taehyun;Park, Chan-Hee;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.610-622
    • /
    • 2021
  • The DECOVALEX project is one of the representative international cooperative projects to enhance the understanding of the complex Thermo-Hydro-Mechanical-Chemical(THMC) coupled behavior in the high-level radioactive waste disposal system based on the numerical simulation. DECOVALEX-2023 is the current phase consisting of 7 tasks, and Task C aims to model the THM coupled behavior in the disposal system based on the Full-scale Emplacement (FE) experiment at the Mont-Terri underground rock laboratory. This study performs the numerical simulation based on the OGS-FLAC developed for the current study. In the numerical model, we emplaced the heater with constant power horizontally based on the FE experiment and monitored the pressure development, temperature increase, and mechanical deformation at the specific monitoring points. We monitored the capillary pressure as the primary effect inducing the flow in the buffer system, and thermal stress and pressurization were dominant in the surrounding rocks' area. The results will also be compared and validated with the other participating groups and the experimental data further.

A Thermo-Hydro-Mechanical Coupled Numerical Simulation on the FE Experiment: Step 1 Simulation in Task C of DECOVALEX-2023 (Mont Terri FE 실험 대상 열-수리-역학 복합거동 수치해석: DECOVALEX-2023 Task C 내 Step 1 수치해석 연구)

  • Taehyun, Kim;Chan-Hee, Park;Changsoo, Lee;Jin-Seop, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.518-529
    • /
    • 2022
  • In Task C of the DECOVALEX-2023 project, nine institutes from six nations are developing their numerical codes to simulate thermo-hydro-mechanical coupled behavior for the FE experiment performed at Mont Terri underground rock laboratory, Switzerland. Currently, Step 1 for comparing the simulation results to field data is the ongoing stage, and we used the OGS-FLAC simulator for a series of numerical simulations. As a result, temperature increase depending on the heating hysteresis was well simulated, and saturation variation in the bentonite depending on phase change was observed. However, due to the suction overestimation, relative humidity and temperature change in the bentonite and the pressure variation in the Opalinus clay showed a difference compared to the field data. From the observation, it is confirmed that the effect of the bentonite capillary pressure is dominant to the flow analysis in the disposal system. We further plan to draw improved results considering tunnel support material and accurate initial water pressure distribution. Additionally, the thermal, hydrological, and mechanical anisotropy of the Opalinus clay was well simulated. From the simulation results, we confirmed the applicability of the OGS-FLAC simulator in the disposal system analysis.

Optimized Flooding Analysis Method for Compartment for Nuclear Power Plant (원전 격실에 대한 최적 침수분석 방법)

  • Song, Dong-Soo;Kim, Sang-Yeol
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.75-80
    • /
    • 2012
  • In this paper a realistic bounding method for flooding analysis following rupture of large size of thanks and piping is defined. Mass and energy release during main feedwater line break accident is analyzed with RETRAN code. It is modeled that the main feed water control valve is closed in 5.0 seconds after reactor trip. In result of the analysis, largest mass and energy is discharged at 70% reactor power. The flood sources for main feedwater room are calculated when piping failure occurs in the high energy line and medium energy line. Based on the result of flood level (1.43m), it is investigated that all of the safety-related environmental qualification equipments are well located above the flood level.

Index Evaluation to Define the Bioenergy as a Renewable Energy Resource (바이오에너지를 정의하는 지표들에 대한 고찰)

  • Soh, Jin-Young;Kim, Hyun-Jong;Lee, Jae-Sung;Oh, Kyeong-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.480-487
    • /
    • 2013
  • Bioenergy is classified to one of the renewable energy resources such as solar, wind, hydro and tidal energies. It should be noted that all the renewable energies contribute to the reduction of greenhouse gases emission. In some cases, energy from wastes was also categorized as a renewable energy in our country even though it has only negligible effect on the emission reduction. In this paper, we tried to identify the bioenergy in order to follow the global indices of the renewable energy. The indices evaluated here were whether a resource is renewable, biogenic, biodegradable, combustible and organic. Biogenic and combustible were selected as the indices to identify the bioenergy. It was also suggested that combustible as an index can be exchangeable to organic.

Case Study : Assessment of Small Hydropower Potential Using Runoff Measurements (관측 유량 자료를 이용한 소수력 잠재량 평가에 대한 사례연구)

  • Jung, Sung-Eun;Kim, Jin-Young;Kang, Yong-Heack;Kim, Hung-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.4
    • /
    • pp.43-54
    • /
    • 2018
  • In this study, we assessed dependency of small hydropower potentials on the two different runoff such as the estimated runoff based on the rainfall amounts and measured runoff. The hydpropower potentials were evaluated using actural power generations taken from Deoksong, Hanseok, and Socheon small hydropower plants over Han and Nakdong river basins, respectively. As a result of comparing the actual power generation amount with the potential amount based on the rainfall amount and the estimated amount based on the observed flow amount by each small hydroelectric power plant, the degree of latent small hydro energy by the observed flow was confirmed to be high. It is confirmed that the potential hydroelectric power generation rate is estimated to be about average 30%Point higher than the actual generation amount as a result of the measured flow rate rather than using the rainfall amount. Based on this, a method for improving the degree of the actual generation amount is proposed.