• 제목/요약/키워드: hydraulic-mechanical coupling

검색결과 54건 처리시간 0.026초

Hydro-mechanical coupling algorithm of reinforced concrete lining in hydraulic pressure tunnel using cohesive elements

  • Li Zhou;Kai Su;Ding-wei Liu;Yin-quan Li;Hong-ze Zhu
    • Structural Engineering and Mechanics
    • /
    • 제86권1호
    • /
    • pp.139-156
    • /
    • 2023
  • The reinforced concrete lining in the hydraulic pressure tunnel tends to crack during the water-filling process. The lining will be detached from the surrounding rock due to the inner water exosmosis along concrete cracks. From the previous research achievements, the cohesive element is widely adopted to simulate the concrete crack but rarely adopted to simulate the lining-rock interface. In this study, the zero-thickness cohesive element with hydro-mechanical coupling property is not only employed to simulate the traditional concrete crack, but also innovatively introduced to simulate the lining-rock interface. Combined with the indirect-coupled method, the hydro-mechanical coupling algorithm of the reinforced concrete lining in hydraulic pressure tunnels is proposed and implemented in the finite element code ABAQUS. The calculated results reveal the cracking mechanism of the reinforced concrete lining, and match well with the observed engineering phenomenon.

압력커플링을 이용한 다수개의 부표를 가진 파력발전기 개발 (Development of a Multi-Absorbing Wave Energy Converter using Pressure Coupling Principle)

  • 도황팅;누엔밍치;판콩빙;이세영;박형규;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권3호
    • /
    • pp.31-40
    • /
    • 2014
  • This paper proposes a multi absorbing wave energy converter design, in which a hydrostatic transmission is used to transfer wave energy to electric energy. The most important feature of this system is its combination of the pressure coupling principle with the use of a hydraulic accumulator to eliminate the effects of wave power fluctuation; this maintains a constant speed of the hydraulic motor. Tilt motion of a floating buoy was employed as the power take-off mechanism. Furthermore, a PID controller was designed to carry out the speed control of the hydraulic motor. The design offers some advantages such as extending the life of the hydraulic components, increasing the amount of energy harvested, and stabilizing the output speed.

An improved radius-incremental-approach of stress and displacement for strain-softening surrounding rock considering hydraulic-mechanical coupling

  • Zou, Jin-Feng;Wei, Xing-Xing
    • Geomechanics and Engineering
    • /
    • 제16권1호
    • /
    • pp.59-69
    • /
    • 2018
  • This study focused on the mechanical and hydraulic characteristics of underwater tunnels based on Mohr-Coulomb (M-C), Hoek-Brown (H-B) and generalized H-B failure criteria. An improved approach for calculating stress, displacement and plastic radius of the circular tunnel considering hydraulic-mechanical coupling was developed. The innovation of this study was that the radius-incremental-approach was reconstructed (i.e., the whole plastic zone is divided into a finite number of concentric annuli by radius), stress and displacement of each annulus were determined in terms of numerical method and Terzaghi's effective stress principle. The validation of the proposed approach was conducted by comparing with the results in Brown and Bray (1982) and Park and Kim (2006). In addition, the Rp-pin curve (plastic radius-internal supporting pressure curve) was obtained using the numerical iterative method, and the plastic radius of the deep-buried tunnel could be obtained by interpolation method in terms of the known value of internal supporting pressure pin. Combining with the theories in Carranza and Fairhurst (2000), the improved technique for assessing the reliability of the tunnel support was proposed.

Thermal-fluid-structure coupling analysis for plate-type fuel assembly under irradiation. Part-I numerical methodology

  • Li, Yuanming;Yuan, Pan;Ren, Quan-yao;Su, Guanghui;Yu, Hongxing;Wang, Haoyu;Zheng, Meiyin;Wu, Yingwei;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1540-1555
    • /
    • 2021
  • The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect its stress conditions, mechanical behavior and thermal-hydraulic performance. A reliable numerical method is of great importance to reveal the complex evolution of mechanical deformation, flow redistribution and temperature field for the plate-type fuel assembly under non-uniform irradiation. This paper is the first part of a two-part study developing the numerical methodology for the thermal-fluid-structure coupling behaviors of plate-type fuel assembly under irradiation. In this paper, the thermal-fluid-structure coupling methodology has been developed for plate-type fuel assembly under non-uniform irradiation condition by exchanging thermal-hydraulic and mechanical deformation parameters between Finite Element Model (FEM) software and Computational Fluid Dynamic (CFD) software with Mesh-based parallel Code Coupling Interface (MpCCI), which has been validated with experimental results. Based on the established methodology, the effects of non-uniform irradiation and fluid were discussed, which demonstrated that the maximum mechanical deformation with irradiation was dozens of times larger than that without irradiation and the hydraulic load on fuel plates due to differential pressure played a dominant role in the mechanical deformation.

유압 장치를 이용한 철도 연결기용 고용량 충격완충기의 성능시험 (Performance Tests of a High Capacity Buffer Coupling System using a Hydraulic Device)

  • 김남욱;박영일
    • 한국안전학회지
    • /
    • 제31권1호
    • /
    • pp.33-40
    • /
    • 2016
  • Coupling systems under train's collision should take the impact by absorbing the impact energy caused from the collision, so the systems are very important parts for the safety of the trains. However, it is not easy to evaluate the performance of the system because it requires a huge testing facility, which is able to control the impact and to handle many safety issues. In this paper, test results are provided, which are obtained from collision tests of a single train having a coupling system in the front, and the results are analyzed in order to understand the characteristics and the dynamic behaviors of energy absorbing materials in the coupling system, such as a hydraulic buffer, and two rubber buffers. The results show that the force of each component could be empirically described by the compression displacement and velocity. The analyzed results will be applied to simulation models, and advanced studies wouuld be available if the simulation models are well validated with the test results.

연결기용 완충기의 시뮬레이션 모델 비교 (Comparison of Simulation Models for Train Buffer Couplings)

  • 장현목;김남욱;박영일
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.107-114
    • /
    • 2010
  • Coupling systems for trains need more complicated buffer equipments than existing systems because the recent tendency of the regulations enforces trains to be safe for collisions even when the driving speed is higher than before. Using hydraulic buffer is an effective way to satisfy the requirement while it causes the increase of the cost for the coupling system. In this study, we introduce the methodology to build a simulation model for the hydraulic buffer, which could be installed into the coupling systems. In the simulation model of the hydraulic buffer, the reacting force is determined by both buffer stroke and speed whereas the elastic buffer model is designed by using only the buffer stroke in other studies. The simulation results with the advanced hydraulic buffer model shows that the simulating results can be close the real experimental results around 10%, and, if we considers friction forces, the simulation calculates the maximum force within 10% comparing to the experimental.

Thermal-fluid-structure coupling analysis on plate-type fuel assembly under irradiation. Part-II Mechanical deformation and thermal-hydraulic characteristics

  • Li, Yuanming;Ren, Quan-yao;Yuan, Pan;Su, Guanghui;Yu, Hongxing;Zheng, Meiyin;Wang, Haoyu;Wu, Yingwei;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1556-1568
    • /
    • 2021
  • The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect stress conditions, mechanical behaviors and thermal-hydraulic performance of the fuel assembly. This paper is the Part II work of a two-part study devoted to analyzing the complex unique mechanical deformation and thermal-hydraulic characteristics for the typical plate-type fuel assembly under irradiation effect, which is on the basis of developed and verified numerical thermal-fluid-structure coupling methodology under irradiation in Part I of this work. The mechanical deformation, thermal-hydraulic performance and Mises stress have been analyzed for the typical plate-type fuel assembly consisting of support plates under non-uniform irradiation. It was interesting to observe that: the plate-type fuel assembly including the fuel plates and support plates tended to bend towards the location with maximum fission rate; the hot spots in the fuel foil appeared at the location with maximum thickness increment; the maximum Mises stress of fuel foil was located at the adjacent location with the maximum plate thickness increment et al.

방사성 폐기물 저장을 위한 불연속 암반의 특성 및 고온하에서의 암반의 수리열역학적 상호작용에 관한 연구 (A Study on Characteristics of Jointed Rock Masses and Thermo-hydro-mechanical Behavior of Rock Mass under High Temperature)

  • 이희근;김영근;이희석
    • 터널과지하공간
    • /
    • 제8권3호
    • /
    • pp.184-193
    • /
    • 1998
  • 방사성 폐기물의 안전한 처분을 위해서는 암반의 역학적, 열적, 유체 거동 뿐 아니라 암반과 물 사이의 물리 화학적 상호작용을 이해할 필요가 있다. 또한 지질구조, 지하현지응력, 습곡, 열수작용, 마그마의 관입, 판구조 등과 같은 많은 조건을 모델링하고 예측하기 위해서는 암석의 역학적, 수리적 특성을 알아야 한다. 이 연구는 심부 암반에 폐기물 처분과 관련된 암석역학적인 사항들에 대해 연구들에 기초하고 있다. 이 논문은 변하는 온도 상태에서 암반의 역학적 수리적 거동, 암반의 열-수리-역학적 상호작용 해석과 불연속 암석의 거동 특성 등을 포함한다. 역학적 특성은 Interaken 암석역학 시험 시스템으로 측정되었으며, 수리적 특성에는 순간 증압 투수계수 측정 시스템이 사용되었다. 모든 결과에서 암석 특성은 온도 변화에 민감함을 보였다.

  • PDF

입자결합모델을 이용한 횡등방성 암석에서의 수압파쇄 특성 연구 (Study on Hydraulic Fracturing in Transverse Isotropic Rock Using Bonded Particle Model)

  • 정재웅;허찬;전석원
    • 터널과지하공간
    • /
    • 제23권6호
    • /
    • pp.470-479
    • /
    • 2013
  • 수압파쇄는 암반에서 유체의 흐름을 촉진시키기 위한 방법으로 사용되며 지열개발, 세일가스의 개발 등 최근 에너지 분야에서 그 어느 때 보다 활발한 연구가 이루어지고 있다. 수압파쇄의 대상이 되는 암반은 등방성을 갖지 않는 경우가 대부분이며 일부 퇴적암층에서는 횡등방성 암반에서 수압파쇄가 이루어진다. 횡등방성 암반에서는 수압파쇄에서 발생하는 균열의 성장 방향이 반드시 최대주응력 방향과 일치하지 않으며 이방성 구조에 따라 변화하게 된다. 그러므로 이 연구에서는 입자결합모델을 이용하여 횡등방성 암석에서의 수압파쇄 특성을 고찰하고 분석하고자 하였다. 또한 실험실 규모의 수압파쇄 실험을 실시하여 수치해석 결과의 타당성을 분석하고자 하였다. 본 연구에서는 가압되는 유체의 점도 및 층리면의 각도 그리고 이방성에 의한 영향으로 균열의 성장 및 균열 패턴에 큰 차이를 보였으며, 횡등방성 모델의 경우 전단균열에 의한 수압파쇄 균열의 성장이 우세한 것으로 나타났다.

유압 퀵 커플러 Ring부의 형상변경을 통한 최적설계에 관한 연구 (A Study on the Optimal Design by Changing the Ring Shape of Hydraulic Quick Coupler)

  • 이윤승;김남용;이도영;조용민;류성기
    • 한국기계가공학회지
    • /
    • 제21권5호
    • /
    • pp.84-90
    • /
    • 2022
  • Hydraulic coupling systems play an important role in easily connecting or disconnecting pipes or hoses that transmit high-pressure fluids without hydraulic oil leakage in hydraulic power transmission equipment. A flat-face hydraulic quick coupler is a recently developed product that can reduce environmental pollution by minimizing hydraulic oil leakage during connection and disconnection. In this study, the influence of the shape of the inner ring of a 3/8" flat-face hydraulic quick coupler on its internal flow characteristics was analyzed and evaluated by numerical analysis based on computational fluid dynamics. The flow velocity distribution, temperature distribution, and optimal shape design of the inner ring were obtained by comparing the results of the flow characteristics, such as the pressure drop.